K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

AM = 5 => BC = 10 

Dung py ta go  tính ra AB 

Tính các góc còn lại nhờ 3 cạnh vừa tính dùng hàm cos ; sin gì đó

15 tháng 8 2015

kẻ đường cao BH

xét tứ giác ABHD có góc A=góc D=góc H=90 độ

=> ABHD là hình chữ nhật

=> S ABHD=AB.AD=4.3=12 cm vuông

xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan\(40^0\)=3.6 cm

=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông

=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông

29 tháng 9 2024

vẽ hình họ mình vs

25 tháng 8 2021

Từ B kẻ BH⊥CD

⇒ ABHD là hình chữ nhật

⇒ \(\left\{{}\begin{matrix}HD=AB=4cm\\BH=AD=3cm\end{matrix}\right.\)

Ta được: \(HC=\dfrac{BH}{tan30^0}=\dfrac{3}{\dfrac{\sqrt{3}}{3}}=3\sqrt{3}\)   ( cm )

⇒    CD = HC + HD = 4 + \(3\sqrt{3}\) cm

Khi đó:

\(S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right)AD=\dfrac{1}{2}\left(4+4+3\sqrt{3}\right).3\)

\(S_{ABCD}=\dfrac{24+9\sqrt{3}}{2}\)  \(\left(cm^2\right)\)

25 tháng 8 2021

chỉ vậy ai hiểu

 

 

1 tháng 7 2018

Ta áp dụng công thức Brahmagupta để tính

\(s=\frac{\sqrt{\left(AB^2+CD^2+BD^2+AC^2\right)+8\cdot AB\cdot CD\cdot BD\cdot AC-2\left(AB^4+CD^4+BD^4+AC^4\right)}}{4}\)

A) Thay số vào ta đc  \(S=6\sqrt{55}\approx44,4972\left(cm^2\right)\)

b)  \(S\approx244,1639\left(cm^2\right)\)

hok tốt ...

26 tháng 7 2019

Công thức Brahmagupta là công thức tính diện tích của một tứ giác nội tiếp (tứ giác mà có thể vẽ một đường tròn đi qua bốn đỉnh của nó) mà hình thang ko có đường tròn nào đi qua đủ bốn đỉnh của nó nên công thức này ko được áp dụng vào bài này