K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì tổng 3 góc trong 1 tam giác luôn bằng 180 độ.

Xét hai tam giác AEB và DEC có:

\(\widehat {AEB} = \widehat {DEC}\)(đối đỉnh) và \(\widehat {BAC} = \widehat {BDC} = {90^o}\).

Suy ra: \(\widehat {ABE} = \widehat {DCE}\) 

Xét 2 tam giác AEB và DEC có:

\(\widehat {BAC} = \widehat {BDC} (= {90^o}\))

\(AB=DC\) (gt)

\(\widehat {ABE} = \widehat {DCE}\) (cmt)

=>\(\Delta AEB = \Delta DEC\)(g.c.g)

4 tháng 12 2023

loading...

a) Ta có:

∠ABD = ∠CDE = 60⁰ (gt)

Mà ∠ABD và ∠CDE là hai góc so le trong

⇒ AB // CD

b) Vẽ tia Am là tia đối của tia AB

Do AB // CD

⇒ ∠mAC = ∠ACD (so le trong)

Mà ∠mAC + ∠BAC = 180⁰ (kề bù)

⇒ ∠ACD + ∠BAC = 180⁰

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét \(\Delta ABC\) và \(\Delta MNP\) có:

\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)

Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)

Xét \(\Delta DEF\) và \(\Delta GHK\) có:

\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)

Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)

30 tháng 11 2023

loading... a) Ta có:

∠A₁ = ∠C₁ = 90⁰

Mà ∠A₁ và ∠C₁ là hai góc đồng vị

⇒ a // b

b) Ta có:

∠D₁ + ∠D₂ = 180⁰ (kề bù)

⇒ ∠D₁ = 180⁰ - ∠D₂

= 180⁰ - 72⁰

= 108⁰

Do a // b (cmt)

⇒ ∠ABD = ∠D₁ = 108⁰ (so le trong)

c) Do BE là tia phân giác của ∠ABD

⇒ ∠ABE = ∠ABD : 2

= 108⁰ : 2

= 54⁰

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.

Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau

b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ  = 50^\circ \)

Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Dãy đã cho là dãy số liệu.

=> Em ủng hộ bạn Tròn.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)