Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
^ECD = ^ACB (2 góc đối đỉnh).
Vì a // b nên:
^ABC = ^CED và ^CDE = BAC (2 góc so le trong)
Vậy các cặp góc bằng nhau của 2 tam giác CAB và CDE là: ^ACB = ^ECD; ^BAC = ^CDE; ^ABC = ^CED.
góc CAB = góc CDE
góc CBA = góc CED
góc ACB = góc DCE
chúc bạn học tốt
BAC = DCE (đối đỉnh)
CAB = CDE (so le trong)
ABC = CED (so le trong)
Bạn tự vẽ hình nhé
Xét tứ giác EHDA có 3 góc vuông ( CAB = HDA = EHD = 90 độ ) nên AHDA là hình chữ nhật
b) HE song song với AC do cùng vuông với AB
HD song song với AB do cùng vuông với AC
c) Do EHDA là hình chữ nhật nên góc HEA = 90 độ và góc HDA = 90 độ
suy ra góc BEH = góc HDC = 90 độ
Do EH song song với AC nên góc BHE = góc C ( hai góc đồng vị )
Do HD song song với AB nên gocsDHC = góc C ( hai góc đồng vị )
d) Ta thấy: góc BHE + góc EHA = góc BHA = 90 độ ( do H vuông góc với BC )
góc DHA + góc EHA = góc EHD = 90 độ ( do HE vuông góc HD )
suy ra góc BHE = góc DHA
Tương tự ta có góc EHA = góc DHC ( cùng phụ với góc AHD )
e) Ta thấy góc BAH + góc HAC = 90 độ
góc ACB + góc HAC = 180 độ - góc AHC = 90 độ
Suy ra góc BAH = góc ACB
Đây là lời giải chi tiết đó bạn
a) Xét \(\Delta{ABC}\) và \(\Delta{DEF}\) có:
AB = DE (gt)
\(\widehat {BAC} = \widehat {EDF}\) (gt)
AC = DF (gt)
\(\Rightarrow \Delta{ABC}=\Delta{DEF}\) (c-g-c)
b) Ta có: \(\widehat B + \widehat C = \widehat Q + \widehat R = 90^0\)
Mà \(\widehat B = \widehat Q\) \( \Rightarrow \widehat C = \widehat R\)
Xét \(\Delta{ABC}\) và \(\Delta{PQR}\) có:
\(\widehat C = \widehat R\) (gt)
BC = QR (gt)
\(\widehat B = \widehat Q\) (gt)
\(\Rightarrow \Delta{ABC}=\Delta{PQR}\) (g-c-g)
c) Xét \(\Delta{ABC}\) và \(\Delta{HKG}\) có:
\(\widehat C = \widehat G\) (gt)
AC = HG (gt)
\(\widehat A = \widehat H\) (gt)
\(\Rightarrow \Delta{ABC}=\Delta{HKG}\) (g-c-g)