K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a, Xét tam giác BDC và tam giác HBC có:

            góc DBC= góc BHC(=90độ)

           Góc C chung(gt)

=> Tsm giác BDC đồng dạng với tam giác HBC

b, Theo hệ thức trong tam giác vuông BDC ta có:

\(BC^2=DC.HC\)  => \(HC=\frac{BC^2}{DC}=\frac{15^2}{25}=9\)          

Áp dụng định lí Pytago ta có:

HC= \(\sqrt{BC^2-HC^2=\sqrt{15^2-9^2}=12}\) 

=> DC=25-12=13

c, Xét tam giác ADK và tam giác BCH có:

          góc K = góc H(=90độ)

           AD=BC

         góc D=góc C

=> Tam giác ADK=Tam giác BCD

=> DK=HC

=>AB= KH=DC-2HC=25-9.2=7

=> Diện tích hình thang ABCD =\(\frac{AB+DC}{2}.BH=\frac{7+25}{2}.BH\)

Bạn tính nốt nha

27 tháng 4 2018

A B C D H

Xét tam giác vuông BDC và tam giác vuông HBC có:

\(\widehat{C}\) là góc chung

Do đó : \(\Delta BDC~\Delta HBC\)( g-g )

b) 

Xét tam giác vuông BDC có:

\(BD^2=DC^2-BC^2\)( ĐLPTG )

\(\Rightarrow BD=\sqrt{DC^2-BC^2}\)

\(\Rightarrow BD=\sqrt{400}=20\)

Có \(\Delta BDC~\Delta HBC\) ( cmt)

\(\Rightarrow\frac{BD}{BH}=\frac{DC}{BC}\)

\(\Leftrightarrow\frac{20}{BH}=\frac{25}{15}\)

\(\Leftrightarrow BH=\frac{20.15}{25}=12\) ( cm )

Câu c bạn tự làm nhé

12 tháng 4 2018

a)Xét tam giác BDC và tam giác HBC có :

\(\widehat{DBC}=\widehat{BHC}\left(=90^o\right)\)

Chung \(\widehat{BCD}\)

\(\Rightarrow\) Tam giác BDC đồng dạng với tam giác HBC ( g-g )

b) Do tam giác BDC đồng dạng với tam giác HBC

\(\Rightarrow\frac{DC}{BC}=\frac{BC}{HC}\)

\(\Leftrightarrow\frac{25}{15}=\frac{15}{HC}\)

\(\Leftrightarrow HC=9\left(cm\right)\)

Ta có : \(HD+HC=DC\)

\(\Leftrightarrow HD+9=25\)

\(\Leftrightarrow HD=16\left(cm\right)\)

27 tháng 5 2017

 BD^2 = CD^2 - BC^2 = 25^2 - 15^2 = 400 => BD = 20 
BH.CD = BD.BC ( = 2 S(BCD)) 
=> BH = BD.BC/CD = 20.15/25 = 12 
CH^2 = BC^2 - BH^2 = 15^2 - 12^2 = 81 => CH = 9 
AB = CD - 2.CH = 25 -2.9 = 7 
=> S(ABCD) = (AB + CD).BH/2 = (7 + 25).12/2 = 192 cm^2

4 tháng 5 2015

A B C D H K

a) Xét tam giác BDC và HBC có:

góc DCB chung; góc BHC = DBC (= 90o)

=> tam giác BDC đồng dạng HBC (g - g)

b) => \(\frac{BC}{HC}=\frac{DC}{BC}\Rightarrow HC.DC=BC^2\Rightarrow HC=\frac{BC^2}{DC}=\frac{15^2}{25}=\frac{225}{25}=9\)cm

HD = CD - HC = 25 - 9 = 16 cm

c) Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BH2 = BC2 - CH2 = 225 - 81 = 144 => BH = 12 cm

Kẻ AK vuông góc với CD tại K

Tam giác ADK = BCH (do cạnh huyền AD = BC; góc ADK = BCH)

=> DK = CH = 9 cm

Dễ có: tứ giác ABHK là hình bình hành => AB = HK = CD - CH - DK = 25 - 9 -  9 = 7 cm

S ABCD = (AB + CD) . BH : 2 = (7 + 25) . 12 : 2 = 192 cm vuông

30 tháng 12 2015

Nếu BD là phân giác góc ADC thì góc A bằng bao nhiêu độ? 

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

Do đo: ΔBDC\(\sim\)ΔHBC

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

HD=10-3,6=6,4(cm)