K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

Thay m=1 vào HPT ,ta được:

\(\hept{\begin{cases}3x+4y=12\\x+2y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3\left(5-2y\right)+4y=12\\x=5-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}15-6y+4y=12\\x=5-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2y=-3\\x=5-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}\\x=5-2.\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}\\x=2\end{cases}}\)

5 tháng 1 2019

a) Khi m = 1

Ta có: \(\hept{\begin{cases}3x+4y=12\\x+2y=5\end{cases}}\)

\(\hept{\begin{cases}3\left(5-2y\right)+4y=12\\x=5-2y\end{cases}\Leftrightarrow\hept{\begin{cases}15-6y+4y=12\\x=5-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}-2y=-3\\x=5-2y\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5-2y=5-2.\frac{3}{2}=2\\y=\frac{3}{2}\end{cases}}\)

Vậy khi m = 1 thì hệ có nghiệm (x;y) = (2; 3/2)

b) \(\hept{\begin{cases}3x+4y=12\\mx+2y=5\end{cases}\Leftrightarrow\hept{\begin{cases}3x+4y=12\\2mx+4y=10\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(3-2m\right)=2\\mx+2y=5\end{cases}}}\)

Để hệ vô nghiệm thì \(x\left(3-2m\right)=2\) phải vô nghiệm

                     \(\Leftrightarrow3-2m=0\Leftrightarrow m=\frac{3}{2}\)

P/s: k chắc lắm

10 tháng 1 2018

ai tl ho vs @@

10 tháng 7 2017

1.Để  đường thẳng  \(y=\left(m-1\right)x+3\) song song với đường thẳng \(y=2x+1\)

thì \(m-1=2\Rightarrow m=3\)

2. a. Với \(m=-2\Rightarrow\)\(\hept{\begin{cases}-2x-2y=3\\3x-2y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-\frac{17}{10}\end{cases}}\)

b. Với \(m=0\Rightarrow\hept{\begin{cases}-2y=3\\3x=4\end{cases}\Rightarrow\hept{\begin{cases}y=-\frac{3}{2}\\x=\frac{4}{3}\end{cases}\left(l\right)}}\)

Với \(m\ne0\Rightarrow\hept{\begin{cases}m^2x-2my=3m\\6x+2my=8\end{cases}\Rightarrow\left(m^2+6\right)x=3m+8}\)

\(\Rightarrow x=\frac{3m+8}{m^2+6}\)\(\Rightarrow y=\frac{mx-3}{2}=\frac{m\left(3m+8\right)-3\left(m^2+6\right)}{2\left(m^2+6\right)}=\frac{4m-9}{m^2+6}\)

Để \(x+y=5\Rightarrow\frac{3m+8}{m^2+6}+\frac{4m-9}{m^2+6}=5\Rightarrow7m-1=5m^2+30\)

\(\Rightarrow-5m^2+7m-31=0\)

Ta thấy phương trình vô nghiệm nên không tồn tại m để \(x+y=5\)

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

20 tháng 4 2020

\(a,\)Từ hệ PT trên \(< =>\hept{\begin{cases}2x-y=2\\3x+2y=5\end{cases}}\)

\(< =>\hept{\begin{cases}4x-2y=4\\3x+2y=5\end{cases}}\)

\(< =>\hept{\begin{cases}7x=9\\2x-y=2\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{9}{7}\\\frac{18}{7}-y=2\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{9}{7}\\y=\frac{4}{7}\end{cases}}\)

Vậy nghiệm của PT trên là ...