K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

\(\int^{y=2x-m-5}_{\left(m-1\right)x-m\left(2x-m-5\right)=3m-1}\)
\(\Leftrightarrow\int^{y=2x-m-5}_{mx-x-2mx+m^2+5m=3m-1}\)
\(\Leftrightarrow\int^{y=2x-m-5}_{x\left(m+1\right)=m^2+2m+1\left(1\right)}\)
Để hệ có nghiệm duy nhất <=> pt (1) có nghiệm duy nhất <=> \(m+1\ne0\Leftrightarrow m\ne-1\)
khi đó x=m+1 thay vào tìm đc y=m-3
Mà \(x+y=0\Leftrightarrow m+1+m-3=0\Leftrightarrow m=1\left(TM\right)\)

22 tháng 12 2015

ta có khi \(m\ne1\), hệ có nghiệm duy nhất : x=m+1 và y=m-3

khi đó x+y=0 <=> m+1+m-3=0 => m=1

1 tháng 1 2016

\(\int^{y=2x-m-5}_{\left(m-1\right)x-m\left(2x-m-5\right)=3m-1}\)

\(\int^{y=2x-m-5}_{mx-x-2mx+m^2+5m-3m+1=0}\)

\(\int^{y=2x-m-5}_{x\left(m+1\right)+\left(m+1\right)^2=0}\)

để pt trên có nghiêm duy nhất khi m+1 khác 0

                                      <=> m khác -1

suy ra x=m+1

y=2(m+1)-m-5=2m+2-m-5=m-3

để x+y=0

<=>m+1+m-3=0

<=>2m=2

 <=>m=1(tmdk)

6 tháng 9 2020

Hệ có nghiệm duy nhất khi và chỉ khi \(\frac{m-1}{2}\ne\frac{-m}{-1}\Leftrightarrow m\ne-1\)

Xét m=0 thì x=1, y=-3 --> thỏa mãn 

Xét m khác 0 thì nhân 2 vế của đẳng thức thứ 2 cho m ---> \(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{cases}}\)

Lấy đẳng thức 2 trừ đẳng thức 1 vế theo vế--> Dễ dàng tính được x=m+1, y=m-3 ---> thế vào điều kiện:

\(x^2-y^2< 4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2< 4\Leftrightarrow8m-8< 4\Leftrightarrow m< \frac{3}{2}\)

Đối chiếu điều kiện có nghiệm duy nhất---> Kết luận \(m< \frac{3}{2},m\ne-1\)

18 tháng 12 2016

\(m=1\)

11 tháng 5 2020

Đáp án

m=1

9 tháng 2 2020

\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)

a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)

b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)

\(\Rightarrow mx+my=4m-4\)

\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)