K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m\left(mx-2\right)=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m^2x-2m=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+1\right)=3+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m.\dfrac{3+2m}{m^2+1}-2\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m+2m^2-2m^2-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(x+y=0\\ \Leftrightarrow\dfrac{3m-2}{m^2+1}+\dfrac{3+2m}{m^2+1}=0\\ \Leftrightarrow\dfrac{3m-2+3+2m}{m^2+1}=0\\ \Rightarrow4m+1=0\\ \Leftrightarrow m=-\dfrac{1}{4}\)

 

20 tháng 3 2022

x+y=0 \(\Rightarrow\) y=-x.

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}mx+x=2\\x-mx=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x\left(m+1\right)=2\\x\left(1-m\right)=3\end{matrix}\right.\) \(\Rightarrow\) \(\dfrac{2}{m+1}=\dfrac{3}{1-m}\) \(\Rightarrow\) m=-1/5 (nhận).

=>2x-2y=8 và 2x+3y=5m+3

=>-5y=8-5m-3=-5m+5 và x-y=4

=>y=m-1 và x=4+m-1=m+3

x^2+y^2-4=(m+3)^2+(m-1)^2-4

=m^2+6m+9+m^2-2m+1-4

=2m^2+4m+6

=2(m^2+2m+3)

=2(m^2+2m+1+2)

=2[(m+1)^2+2]>=4

=>A<=2019/4

Dấu = xảy ra khi m=-1

27 tháng 2 2021

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1

Ta có: \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{17}\\y=5x-1=\dfrac{5m+15}{17}-\dfrac{17}{17}=\dfrac{5m-2}{17}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất sao cho x<0 và y>0 thì 

\(\left\{{}\begin{matrix}\dfrac{m+3}{17}< 0\\\dfrac{5m-2}{17}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+3< 0\\5m-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\m>\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

4 tháng 2 2021

 m=3m=3 hoặc m=1m=1.

 

9 tháng 2 2021

\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)

xét phương trình 2 ta được ; (m-2)(m+3)x=m+3

với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m

xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z

                                          =>x-1=2k

                                           =>x=2k+1

do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z

                         =>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn

 

29 tháng 12 2022

Bài 1:

- Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.

- Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)

- Với \(m=1\). Thế vào (1) ta được:

\(0x=0\) (phương trình vô số nghiệm).

\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)

- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)

Với \(m=-1\). Thế vào (1) ta được:

\(0x=-4\) (phương trình vô nghiệm)

Vậy với \(m=-1\) thì hệ đã cho vô nghiệm

Với \(m\ne\pm1,0\).

\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)

Thay vào (2) ta được:

\(\dfrac{3m+1}{m+1}+my=m+1\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)

\(\Leftrightarrow my\left(m+1\right)=m^2-m\)

\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)

\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)

Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).

 

29 tháng 12 2022

Bài 2:

\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)

\(\Rightarrow4\left(m+1\right)y-y=-6\)

\(\Leftrightarrow\left(4m+3\right)y=-6\)

\(\Rightarrow y=-\dfrac{6}{4m+3}\)

Để y nguyên thì:

\(6⋮\left(4m+3\right)\)

\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)

\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

4m+31236-1-2-3-6
m-1/2 (loại)

-1/4 (loại)

0 (nhận)3/4 (loại)-1 (nhận)-5/4 (loại)-3/2 (loại)-9/4 (loại)

\(\Rightarrow m\in\left\{0;-1\right\}\)

Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)

Thay vào (1) ta được:

\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)

Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.

Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.

Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)

Thay \(y=6\) vào (2) ta được:

\(4x-6=-2\)

\(\Leftrightarrow x=1\)

Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.

Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.