K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

Giải hệ phương trình bằng phương pháp cộng đại số

NV
12 tháng 2 2020

\(\Rightarrow\left\{{}\begin{matrix}27x=m+3\\25x-3y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{m+3}{27}\\y=\frac{25x-3}{3}=\frac{25m-6}{81}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{m+3}{27}>0\\\frac{25m-6}{81}< 0\end{matrix}\right.\) \(\Rightarrow-3< m< \frac{6}{25}\)

8 tháng 2 2020

\(\left\{{}\begin{matrix}2x+3y=m\\25x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-m=3y\\25x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{m-2x}{3}\\25x+3x-m=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3-2x}{3}\\27x=3+m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3+m}{27}\\y=\frac{m-\frac{6+2m}{27}}{3}=\frac{27m-6-2m}{81}\end{matrix}\right.\)

Mà: \(x>0;y< 0\Rightarrow\left\{{}\begin{matrix}\frac{3+m}{27}>0\\\frac{25m-6}{81}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< \frac{6}{25}\end{matrix}\right.\)

\(\Rightarrow m\in\left\{-3;\frac{6}{25}\right\}\)

15 tháng 1 2018

x=\(\dfrac{m-3y}{2}\)

=> \(25.\dfrac{m-3y}{2}-3y=3\)

=> 25(m-3y)-6y=6

=> 25m-75y-6y-6=0

=>25m-81y-6=0

=>25m-6=81y

=>y=\(\dfrac{25m-6}{81}\)

=>x=\(\dfrac{m-1}{27}\)

voi x>0 thi \(\dfrac{m-1}{27}>0\)

=> m-1>0

=> m>1

voi y<0 thi \(\dfrac{25m-6}{81}< 0\)

=> 25m-6<0

=> m<6/25

1 tháng 2 2019

Sao x= \(\dfrac{m-1}{27}\) đấy

Ta có: \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{17}\\y=5x-1=\dfrac{5m+15}{17}-\dfrac{17}{17}=\dfrac{5m-2}{17}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất sao cho x<0 và y>0 thì 

\(\left\{{}\begin{matrix}\dfrac{m+3}{17}< 0\\\dfrac{5m-2}{17}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+3< 0\\5m-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\m>\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

8 tháng 1 2024

loading...

5 tháng 2 2022

a. Thay m = 1 ta được 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{1}{2}\ne-\dfrac{2}{3}\)*luôn đúng*

\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=m+3-\dfrac{2m+12}{7}=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\)

Ta có : \(\dfrac{m+6}{7}+\dfrac{5m+9}{7}=-3\Rightarrow6m+15=-21\Leftrightarrow m=-6\)

5 tháng 2 2022

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(a,Khi.m=1\Rightarrow\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\2\left(4-2y\right)-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\8-4y-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\7y=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\rightarrow\left(x,y\right)=\left(2,1\right)\)

\(b,\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+6\left(1\right)\\2x-3y=m\left(2\right)\end{matrix}\right.\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}7y=m+6\\x+2y=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Rightarrow\) HPT có no duy nhất 

\(\left(x,y\right)=\left(\dfrac{5m+9}{7};\dfrac{m+6}{7}\right)\)

\(x+y=-3\)

\(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=-3\)

\(\Leftrightarrow5m+9+m+6=-21\)

\(\Leftrightarrow6m=-36\Rightarrow m=-6\)

Với m = -6 thì hệ pt có no duy nhất TM x + y = -3