K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 3 2020
\(\Leftrightarrow\hept{\begin{cases}\left(a+1\right)x-y=3\\y=a-ax\end{cases}}\)
Thay y=a-ax vào pt đầu,ta có
\(\left(a+1\right)x-a+ax=3\)
\(\Leftrightarrow ax+x-a+ax=3\)
\(\Leftrightarrow\)2ax+x=a+3
\(\Leftrightarrow\)x(2a+1)=a+3
Dể hpt có nghiệm duy nhất thì 2a+1\(\ne\)0
\(\Leftrightarrow\)a\(\ne\)\(\frac{-1}{2}\)
\(\Rightarrow\)\(x=\frac{a+3}{2a+1}\)
Mà y=a-ax
\(\Rightarrow y=\frac{a^2-2a}{2a+1}\)
Để x+y>0 thì\(\frac{a+3}{2a+1}+\frac{a^2-2a}{2a+1}=\frac{a^2-a+3}{2a+1}=\frac{\left(a-\frac{1}{2}\right)^2+\frac{11}{4}}{2a+1}\)
Vì tử số >0 nên để x+y>0 thì 2a+1>0
\(\Rightarrow a>-\frac{1}{2}\left(tm\right)\)
Vậy để hpt có nghiệm duy nhất tm x+y>0 thì a>\(-\frac{1}{2}\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+\left(m-1\right)y=2\left(1\right)\\\left(m+1\right)x-y=m+1\left(2\right)\end{cases}}\)
Nếu \(m+1=0\Rightarrow m=-1\Rightarrow\hept{\begin{cases}-2y=2\\-y=0\end{cases}\left(ktm\right)}\)
Nếu \(m+1\ne0\Rightarrow m^2y=m+1\Rightarrow y=\frac{m+1}{m^2}\Rightarrow x=2-\left(m-1\right)y\)
\(\Rightarrow x=2-\frac{\left(m-1\right)\left(m+1\right)}{m^2}=\frac{m^2+1}{m^2}\)
Yêu cầu bài toán \(\Leftrightarrow\frac{m^2+1}{m^2}>\frac{m+1}{m^2}\Rightarrow\frac{m^2-m}{m^2}>0\Rightarrow m^2-m>0\Rightarrow\orbr{\begin{cases}m< 0\\m>1\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m< 0\\m< 1\end{cases};m\ne-1}\)thì .....