K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

a)Với m=2 thì hpt trở thành:

x-2y=5

2x-y=7

<=>

2x-4y=10

2x-y=7

<=>

-3y=3

2x-y=7

<=>

y=-1

x=3

b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)

*m2+2m+my+y+3=0

<=>y.(m+1)=-m2-2m-3

*Với m=-1 =>PT vô nghiệm

*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)

 

bí tiếp

9 tháng 1 2016

a)Với y=1 ta có hpt:

\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)

Vậy nghiệm của hpt là (2;1) khi m=4

b)đợi suy nghĩ

 

23 tháng 4 2020

a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)

                                           \(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)

                                          \(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)

                                         \(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)

Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)

b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)

           \(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)

Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)

Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)

Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)

Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)

                \(\Leftrightarrow\frac{22m-16}{7m-3}>0\)

                \(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)

Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0

Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)

\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)

\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)

\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)

Với x+y+z=0

\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)

=> x=4y

Đến đây đơn giản rồi nhé

9 tháng 2 2020

\(Đkxđ:\hept{\begin{cases}x\ge2\\y\ge2\end{cases}}\)

Ta thấy các vế đều \(\ge0\)nên ta bình phương các vế ta được:

\(\Leftrightarrow\hept{\begin{cases}x+y+3+2\sqrt{\left(x+5\right)\left(y-2\right)}=49\\x+y+3+2\sqrt{\left(x-2\right)\left(y+5\right)}=49\end{cases}}\)

Trừ từng vế ta được: 

\(\sqrt{\left(x+5\right)\left(y-2\right)}=\sqrt{\left(x-2\right)\left(y+5\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=\left(x-2\right)\left(y+5\right)\)

\(\Leftrightarrow xy+5y-2x-10=xy+5x-2y-10\)

\(\Leftrightarrow x=y\)

Thay vào một trong hai pt trên ta được:

\(2x+3+2\sqrt{x^2+3x-10}=49\)

\(\Leftrightarrow\sqrt{x^2+3x-10}=23-x\Leftrightarrow\hept{\begin{cases}x\le23\\x^2+3x-10=\left(23-x\right)^2\end{cases}}\Leftrightarrow x=11\)

Vậy hpt có nghiệm là: \(x=y=11\)