K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}mx+2y=18\\2x-2y=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(m+2\right)x=6\\y=x+6\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Leftrightarrow m\ne-2\)

Khi đó ta có: \(\left\{{}\begin{matrix}x=\frac{6}{m+2}\\y=\frac{6}{m+2}+6\end{matrix}\right.\)

\(2x+y=9\Leftrightarrow\frac{12}{m+2}+\frac{6}{m+2}+6=9\)

\(\Leftrightarrow\frac{18}{m+2}=3\Rightarrow m+2=6\Rightarrow m=4\)

NV
17 tháng 4 2021

Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:

\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)

Thế vào pt đầu:

\(m.1+2.7=18\Rightarrow m=4\)

15 tháng 7 2021

a. Với `m=1`, ta có HPT: \(\left\{{}\begin{matrix}x+2y=18\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-6\\3y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=8\end{matrix}\right.\)

b. Theo đề bài `=>` \(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\\2x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx+2y=18\\x=1\\y=7\end{matrix}\right.\)

`=> m=4`

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

1 tháng 3 2021

a)

Khi m = 1, ta có:

{ x+2y=1+3   

  2x-3y=1

=> { x+2y=4

        2x-3y=1

=> { 2x+4y=8

        2x-3y=1

=> { x+2y=4

        2x-3y-2x-4y=1-8

=> { x=4-2y

       -7y = -7

=> { x = 2

        y = 1

Vậy khi m = 1 thì hệ phương trình có cặp nghệm

(x; y) = (2;1)

1 tháng 3 2021

a) Thay m=1 vào HPT ta có: 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y)= (2;1)

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=7\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4-2y=4-2=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(2;1)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2\left(m+3-2y\right)-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2m+6-4y-3y-m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y+m+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y=-m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2\cdot\dfrac{m+6}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-\dfrac{2m+12}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3 thì \(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=3\)

\(\Leftrightarrow6m+15=21\)

\(\Leftrightarrow6m=6\)

hay m=1

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3

1 tháng 3 2021

a/ Thay  \(m=1\) vào hpt ta có :

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy...

b/ Ta có :

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{2\left(m+3\right)}{2y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{m+3}{y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\m-3y^2+3=my\end{matrix}\right.\)

 

 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1