\(\hept{\begin{cases}x-2y=m+3\\2x+y=2m+1\end{cases}}\) (m là tham số)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

Để pt có nghiệm khi duy nhất khi \(\frac{1}{2}\ne-\frac{2}{1}\)* luôn đúng *

Ta có : \(\hept{\begin{cases}x-2y=m+3\\2x+y=2m+1\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4y=2m+6\\2x+y=2m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}-5y=5\\x-2y=m+3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=m+1\end{cases}}}\)

Thay vào biểu thức trên ta có : \(3x+2y>3\Rightarrow3\left(m+1\right)-2>3\)

\(\Leftrightarrow3m+3-2>3\Leftrightarrow3m>2\Leftrightarrow m>\frac{2}{3}\)

12 tháng 2 2018

từ \(\hept{\begin{cases}x< 1\\y< 6\end{cases}}\)ta có: \(\hept{\begin{cases}2x+y< 8\\3x+2y< 15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3m+1< 8\\2m-3< 15\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{7}{3}\\m< 9\end{cases}}\Rightarrow m< \frac{7}{3}\)

Vậy hệ phương trình thỏa mãn khi m<7/3

3 tháng 6 2021

\(\hept{\begin{cases}2x+y=5m-6\\x-2y=2\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}5y=5m-10\\x-2y=2\end{cases}}}\)

\(\left(1\right)\Rightarrow y=\frac{5m-10}{5}=m-2\)

Thay vào phương trình (2) ta được : 

\(x-2\left(m-2\right)=2\Leftrightarrow x=2+2m-4=2m-2\)

Vậy hệ phương trình có nghiệm ( x ; y ) = ( 2m - 2 ; m - 2 ) (*)

Thay (*) vào biểu thức trên ta được : 

\(2\left(2m-2\right)^2-\left(m-2\right)^2=4\)

\(\Leftrightarrow2\left(4m^2-8m+4\right)-m^2+4m-4=4\)

\(\Leftrightarrow8m^2-16m+8-m^2+4m-4=4\)

\(\Leftrightarrow7m^2-12m=0\Leftrightarrow m\left(7m-12\right)=0\Leftrightarrow m=0;m=\frac{12}{7}\)

3 tháng 6 2021

\(\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}}\)

\(5y=5m-10\)

\(y=m-2\)

\(\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}< =>\hept{\begin{cases}2x+\left(m-2\right)=5m-6\\2x-4\left(m-2\right)=4\end{cases}}}\)

\(< =>x-2\left(m-2\right)=2\)

\(x-2m+4=2\)

\(x=2m-2\)

\(< =>2x^2-y^2=4\)

\(2\left(4m^2-8m+4\right)-\left(m^2-4m+4\right)\)

\(8m^2-16m+8-m^2+4m-4-4=0\)

\(7m^2-12m=0\)

\(m\left(7m-12\right)=0\)

\(\orbr{\begin{cases}m=0\\m=\frac{12}{7}\end{cases}}\)

12 tháng 2 2018

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

12 tháng 2 2018

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)

11 tháng 3 2020

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)

* Giải hệ theo m :

\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)

Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)

Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)

Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)

\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)

Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)

Giải xong muốn gãy tay :v

2 tháng 4 2020

Với m =1 suy ra : 

\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)

b ) Để hệ có nghiệm x+2y=3 

\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)

\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)

29 tháng 4 2020

Theo đề ta có hệ : 

\(\hept{\begin{cases}2x-y=3\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{3}\end{cases}}\)

=> \(\left(2m-1\right)\frac{4}{3}-\frac{1}{3}=-0,5\)

<=> m = 7/16