Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x^2,y^2,z^2≥0 nên x+1≥0;y+1≥0;z+1≥0⇒x,y,z≥−1
★ Nếu x≥0 thì z^2=x+1≥1⇒z>0⇒y^2=z+1>1⇒y>0
Không mất tính tổng quát giả sử x≥y≥z>0⇒x^2≥y^2≥z^2>0⇒y≥z≥x⇒x=y=z và x^2=x+1⇒x=y=z=(1+√5)/2
★ Nếu −1≤x≤0 thì y+1=x^2<1⇒y≤0⇒z+1=y2<1⇒z<0
Không mất tính tổng quát giả sử −1≤x≤y≤z≤0⇒x2≥y2≥z2>0⇒y≥z≥x suy ra x=y=z=(1−√5)/2
Vậy hệ có 2 nghiệm x=y=z=(1±√5)/2
Em còn cách khác. Anh xem có đúng ko?
Điều kiện: \(x,y,z\ge-1\)
Xét các trường hợp, dùng phương pháp đánh giá, CM được:
\(x=y=z\)
Thế vào tìm được nghiệm:
\(x=y=z=\frac{1\pm\sqrt{5}}{x}\)
Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)
$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:
$a^2+2(13-a)=25$
$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$
$\Leftrightarrow a=1$
$\Rightarrow b=12$
Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$
$\Leftrightarrow y^2+y-12=0$
$\Leftrightarrow (y-3)(y+4)=0$
$\Rightarrow y=3$ hoặc $y=-4$
Vậy $(x,y)=(4,3); (-3,-4)$
Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$
vyjbhtu yi