K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

vi x-y=0 => x=y

thay x=y vao he ta duoc

\(\hept{\begin{cases}\left(a+1\right)x-x=a+1&x+\left(a-1\right)x=2&\end{cases}}\)

<=>\(\hept{\begin{cases}ax=a+1\\2=ax\end{cases}}\)

<=>\(\hept{\begin{cases}2=a+1\\ax=2\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\x=y=2\end{cases}}}\)

voi a =1 thi he co nghiem duy nhat x=y=2

10 tháng 2 2020

cai doan dau do may minh bi loi chu no la he gom 2 pt 

(a+1)x-x=a+1  va x+(a-1)x=2

20 tháng 4 2020

ax8=18

5 tháng 3 2020

\(\Leftrightarrow\hept{\begin{cases}\left(a+1\right)x-y=3\\y=a-ax\end{cases}}\)

Thay y=a-ax vào pt đầu,ta có

\(\left(a+1\right)x-a+ax=3\)

\(\Leftrightarrow ax+x-a+ax=3\)

\(\Leftrightarrow\)2ax+x=a+3

\(\Leftrightarrow\)x(2a+1)=a+3

Dể hpt có nghiệm duy nhất thì 2a+1\(\ne\)0

\(\Leftrightarrow\)a\(\ne\)\(\frac{-1}{2}\)

\(\Rightarrow\)\(x=\frac{a+3}{2a+1}\)

Mà y=a-ax

\(\Rightarrow y=\frac{a^2-2a}{2a+1}\)

Để x+y>0 thì\(\frac{a+3}{2a+1}+\frac{a^2-2a}{2a+1}=\frac{a^2-a+3}{2a+1}=\frac{\left(a-\frac{1}{2}\right)^2+\frac{11}{4}}{2a+1}\)

Vì tử số >0 nên để x+y>0 thì 2a+1>0

\(\Rightarrow a>-\frac{1}{2}\left(tm\right)\)

Vậy để hpt có nghiệm duy nhất tm x+y>0 thì a>\(-\frac{1}{2}\)

Ta có phương trình \(x^2-5x+m=0\)

Để PT có nghiệm thì \(\Delta=25-4m\ge0\)

\(\Rightarrow m\le\frac{25}{4}\)

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)

do đó \(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_2x_2=25\)

\(\Leftrightarrow4x_1x_2=0\)

\(\Rightarrow m=0\)(TM)

Vậy..........

Nghiệm j mà lẻ quá trời :))))

Hệ \(\Leftrightarrow\hept{\begin{cases}xy+10y-\frac{1}{2}x-5=xy\\xy-10y+x-10=xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}10y-\frac{1}{2}x-5=0\left(1\right)\\x-10y-10=0\left(2\right)\end{cases}}\)

Lấy (1) cộng (2) ta được:

\(x-\frac{1}{2}x-15=0\)

\(\Leftrightarrow2x-x-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{241}}{4}\left(3\right)\\x=\frac{1-\sqrt{241}}{4}\left(4\right)\end{cases}}\)

Thay (3) vào (2) ta được:

\(10y+10=\frac{1+\sqrt{241}}{4}\)

\(\Rightarrow y=\frac{-39+\sqrt{241}}{40}\)

Thay (4) vào (2) ta được \(y=-\frac{39+\sqrt{241}}{40}\)

Vậy.................

Vì \(\left(m-1\right)x+y=2\)\(\Rightarrow y=2-\left(m-1\right)x\) ( 1 )

Thay vào PT dưới có : \(mx+2-\left(m-1\right)x=m+1\)

\(\Rightarrow x+1=m\)( pt này luôn có nghiệm duy nhất )

\(\Rightarrow x=m-1\), thay vào ( 1 ) ta có :

\(y=2-\left(m-1\right)^2\)

Ta có : \(x+y=-4\) \(\Leftrightarrow m-1+2-\left(m-1\right)^2=-4\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)-6=0\)

\(\left[\left(m-1\right)^2-3\left(m-1\right)\right]+\left[2.\left(m-1\right)-6\right]=0\)

\(\Rightarrow\left[\left(m-1\right)-3\right].\left[\left(m-1\right)+2\right]=0\)

\(\Rightarrow\hept{\begin{cases}m-1=3\\m-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}m=4\\m=-1\end{cases}}\)

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0