Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y=3m+2\\3x-2y=11-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\3x-2\left(3m+2-x\right)=11-m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\3x-2\left(3m+2-x\right)=11-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\5x-6m-4=11-m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\5x=5m+15\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2m-1\\x=m+3\end{cases}}\)
Vậy thì \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=m^2+6m+9-4m^2+4m-1\)
\(=-3m^2+10m+8=-3\left(m^2-\frac{10}{3}m+\frac{25}{9}\right)+\frac{49}{3}\)
\(=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
\(x^2-y^2=\frac{40}{3}\Leftrightarrow m=\frac{5}{3}\)
Vậy để x2 - y2 đạt GTLN thì m = 5/3.
Bài giải :
x+y=3m+2 |
3x−2y=11−m |
⇔{
y=3m+2−x |
3x−2(3m+2−x)=11−m |
⇔{
y=3m+2−x |
3x−2(3m+2−x)=11−m |
⇔{
y=3m+2−x |
5x−6m−4=11−m |
⇔{
y=3m+2−x |
5x=5m+15 |
⇔{
y=2m−1 |
x=m+3 |
Vậy thì x2−y2=(m+3)2−(2m−1)2=m2+6m+9−4m2+4m−1
=−3m2+10m+8=−3(m2−103 m+259 )+493
=−3(m−53 )2+493 ≤493
x2−y2=403 ⇔m=53
Vậy để x2 - y2 đạt GTLN thì m = 5/3.
Với m =1 suy ra :
\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)
b ) Để hệ có nghiệm x+2y=3
\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)
\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
Câu a thì em cứ thay 1 vào rồi giải hệ cơ bản
b) \(\hept{\begin{cases}3mx-y=6m^2-m-2\\5x+my=m^2+12m\end{cases}}\)
<=> \(\hept{\begin{cases}3m^2x-my=6m^3-m^2-2m\\5x+my=m^2+12m\left(1\right)\end{cases}}\)
cộng vế với vế ta có: \(3m^2x+5x=6m^3+10m\)
<=> \(\left(3m^2+5\right)x=2m\left(3m^2+5\right)\)
<=> x = 2m
Thế vào (1) ta có: \(10m+my=m^2+12m\)
<=> \(my=m^2+2m\)
Với m = 0 ta thay vào hệ có nghiệm: \(\hept{\begin{cases}y=2\\x=0\end{cases}}\) => A = 2.2^2 -0^2 = 8 (1)
Với m khác 0 ta có nghiệm: \(\hept{\begin{cases}x=2m\\y=m+2\end{cases}}\)
khi đó: \(A=2\left(m+2\right)^2-\left(2m\right)^2=-2m^2+8m+8\)
\(=-2\left(m^2-4m+4\right)+16=-2\left(m-2\right)^2+16\le16\)(2)
Từ (1) ; (2) => max A = 16 tại m - 2 = 0 hay m = 2