Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có nghiệm khi duy nhất khi \(\frac{1}{2}\ne-\frac{2}{1}\)* luôn đúng *
Ta có : \(\hept{\begin{cases}x-2y=m+3\\2x+y=2m+1\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4y=2m+6\\2x+y=2m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}-5y=5\\x-2y=m+3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=m+1\end{cases}}}\)
Thay vào biểu thức trên ta có : \(3x+2y>3\Rightarrow3\left(m+1\right)-2>3\)
\(\Leftrightarrow3m+3-2>3\Leftrightarrow3m>2\Leftrightarrow m>\frac{2}{3}\)
từ \(\hept{\begin{cases}x< 1\\y< 6\end{cases}}\)ta có: \(\hept{\begin{cases}2x+y< 8\\3x+2y< 15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3m+1< 8\\2m-3< 15\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{7}{3}\\m< 9\end{cases}}\Rightarrow m< \frac{7}{3}\)
Vậy hệ phương trình thỏa mãn khi m<7/3
Với m =1 suy ra :
\(\hept{\begin{cases}2x-y=1\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2x-1\\-x+2x-1=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2.3-1=5\\x=3\end{cases}}\)
b ) Để hệ có nghiệm x+2y=3
\(\Rightarrow\hept{\begin{cases}x+2y=3\\-x+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2y\\-\left(3-2y\right)+y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3-2.\frac{5}{3}=-\frac{1}{3}\\y=\frac{5}{3}\end{cases}}\)
\(\Rightarrow2.\left(-\frac{1}{3}\right)-\frac{5}{3}=2m-1\Rightarrow m=-\frac{2}{3}\)