Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y=3m+2\\3x-2y=11-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\3x-2\left(3m+2-x\right)=11-m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\3x-2\left(3m+2-x\right)=11-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\5x-6m-4=11-m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\5x=5m+15\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2m-1\\x=m+3\end{cases}}\)
Vậy thì \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=m^2+6m+9-4m^2+4m-1\)
\(=-3m^2+10m+8=-3\left(m^2-\frac{10}{3}m+\frac{25}{9}\right)+\frac{49}{3}\)
\(=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
\(x^2-y^2=\frac{40}{3}\Leftrightarrow m=\frac{5}{3}\)
Vậy để x2 - y2 đạt GTLN thì m = 5/3.
Bài giải :
x+y=3m+2 |
3x−2y=11−m |
⇔{
y=3m+2−x |
3x−2(3m+2−x)=11−m |
⇔{
y=3m+2−x |
3x−2(3m+2−x)=11−m |
⇔{
y=3m+2−x |
5x−6m−4=11−m |
⇔{
y=3m+2−x |
5x=5m+15 |
⇔{
y=2m−1 |
x=m+3 |
Vậy thì x2−y2=(m+3)2−(2m−1)2=m2+6m+9−4m2+4m−1
=−3m2+10m+8=−3(m2−103 m+259 )+493
=−3(m−53 )2+493 ≤493
x2−y2=403 ⇔m=53
Vậy để x2 - y2 đạt GTLN thì m = 5/3.
\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a+1\right)x-2ay=a\\6x+2ay=2\end{matrix}\right.\) \(\Rightarrow\left(a^2+a+6\right)x=a+2\Rightarrow x=\frac{a+2}{a^2+a+6}\)
\(\Rightarrow y=\frac{a-2}{a^2+a+6}\)
Do \(a^2+a+6=\left(a+\frac{1}{2}\right)^2+\frac{23}{4}>0\) nên \(x;y\) luôn xác đinh
Vậy hệ luôn có nghiệm duy nhất với mọi a
\(T=x-y=\frac{a+2}{a^2+a+6}-\frac{a-2}{a^2+a+6}=\frac{4}{a^2+a+6}=\frac{4}{\left(a+\frac{1}{2}\right)^2+\frac{23}{4}}\le\frac{4}{\frac{23}{4}}=\frac{16}{23}\)
\(\Rightarrow T_{max}=\frac{16}{23}\) khi \(a+\frac{1}{2}=0\Rightarrow a=-\frac{1}{2}\)
Phương trình (2) là phương trình đường thẳng \(\Delta:\left(2m+1\right)x+my+m-1=0\)
Phương trình (1) có dạng phương trình đường tròn: \(\left(C\right):x^2+y^2=9\)có tâm là \(O\left(0,0\right)\)và bán kính R=3
Hệ có hai nghiệm \(\left(x_1;y_1\right),\left(x_2;y_2\right)\)\(\Leftrightarrow\)đường thẳng \(\Delta\)cắt \(\left(C\right)\)tại 2 điểm \(M\left(x_1;y_1\right),N\left(x_2;y_2\right)\). Khi đó \(MN=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)\(\Leftrightarrow A=MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)
Biểu thức A đạt GTLN khi \(\Delta\)đi qua tâm O của đường tròn, tức là: \(\Delta:\left(2m+1\right).0+m.0+m-1=0\Leftrightarrow m=1\)
\(\hept{\begin{cases}3x-2y=1\\mx+3y=4\end{cases}}\)
\(\hept{\begin{cases}3x=1+2y\\mx+3y=4\end{cases}}\)
\(\hept{\begin{cases}x=1+\frac{2y}{3}\\mx+3y=4\end{cases}}\)
a, Khi thay m = 1 thì biểu thức mx + 3y ta đc
\(x+3y=4\)
Hệ phương trình trở thành : \(\hept{\begin{cases}x=1+\frac{2y}{3}\\x+3y=4\end{cases}}\)
Ta thay x vào biểu thức x + 3y = 4 ta đc
\(1+\frac{2y}{3}+3y=4\)
\(1+\frac{2y}{3}+\frac{9y}{3}-4=0\)
\(-3+\frac{11y}{3}=0\)
\(\frac{11y}{3}=3\Leftrightarrow11y=9\Leftrightarrow y=\frac{9}{11}\)
Ta thay y = 9/11 vào biểu thức x + 3y ta đc
\(x+3.\frac{9}{11}=4\)
\(x+\frac{27}{11}=4\)
\(x=\frac{17}{11}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{17}{11};\frac{9}{11}\right\}\)
a) \(\hept{\begin{cases}2x-3y=5\\4x+y=3\end{cases}}\) và \(\hept{\begin{cases}2x-3y=5\\12x+3y=a\end{cases}}\)
Ta thấy \(2x-3y=5\Leftrightarrow2x-3y=5\)(Luôn đúng)
Để 2 hệ tương đương :
\(4x+y=3\Leftrightarrow12x+3y=a\)
\(\Leftrightarrow3\left(4x+y\right)=3.3\)
\(\Leftrightarrow12x+3y=9=a\)
Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=9\)
b) \(\hept{\begin{cases}x-y=2\\3x+y=1\end{cases}}\) và \(\hept{\begin{cases}2ax-2y=1\\x+ay=2\end{cases}}\)
Ta có : \(x-y=x+ay=2\)
\(\Leftrightarrow y=-ay\)
\(\Leftrightarrow a=-1\)
Thử lại : \(a=-1\)
\(\Leftrightarrow3x+y=-2x-2y=1\)
\(\Leftrightarrow3x+y-2x-2y=2\)
\(\Leftrightarrow x-y=2\)(TM)
Vậy để 2 hệ phương trình tương đương \(\Leftrightarrow a=-1\)