Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-\left(m^2y+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m^2y+2y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(m^2+2\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\cdot\left(2m-1\right)}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Tới đây bạn tự làm tiếp nhé
\(\left\{{}\begin{matrix}x+my=2\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)
thay pt (1) vào pt (2) ta duoc:\(\left\{{}\begin{matrix}x+my=2\\mx-\left(x+my\right)y=1\left(3\right)\end{matrix}\right.\)
PT (3) tương đương: \(mx-y^2m-yx-1=0\)
<=>\(-y^2m-yx+mx-1=0\)
\(\Delta=b^2-4ac=x^2-4.\left(-m\right).\left(mx-1\right)=x^2+4m^2x-4m\)
theo Vi-ét ta có:\(\left\{{}\begin{matrix}S=\dfrac{-b}{a}=\dfrac{-x}{m}\\P=\dfrac{c}{a}=\dfrac{-mx+1}{m}\end{matrix}\right.\)
Để pt có hai nghiệm lớn hơn 0<=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)hay \(\left\{{}\begin{matrix}x^2+4m^2x-4m>0\\\dfrac{-x}{m}>0\\\dfrac{-mx+1}{m}>0\end{matrix}\right.\)
tới chỗ này là tìm m được rồi.Chúc bạn học tốt
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+m^2y=m^2+m\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m^2-1\right)=m^2+m-3m+1\\x+my=m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-2m+1}{\left(m-1\right)\left(m+1\right)}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\cdot\left(m+1\right)}=\dfrac{m-1}{m+1}\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-\dfrac{m^2-m}{m+1}=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
Để x,y đều là số nguyên thì \(\left\{{}\begin{matrix}m-1⋮m+1\\3m+1⋮m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m+1-2⋮m+1\\3m+3-2⋮m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2⋮m+1\\-2⋮m+1\end{matrix}\right.\)
=>\(m+1\in\left\{1;-1;2;-2\right\}\)
=>\(m\in\left\{0;-2;1;-3\right\}\)
mà \(m\notin\left\{1;-1\right\}\)
nên \(m\in\left\{0;-2;-3\right\}\)
giải pt theo cách thế \(\Rightarrow\left\{{}\begin{matrix}x=1+\frac{1}{2m+1}>1\\y=\frac{2m}{2m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\2m>0\end{matrix}\right.\) \(\Leftrightarrow m>0\) vậy ...
\(\left\{{}\begin{matrix}x+2y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
từ (2) ==> \(y=mx-m\)
thế vào (1) ==> \(x+2\left(mx-m\right)=2\Leftrightarrow\left(2m+1\right)x=2m+2\Leftrightarrow x=\frac{2m+2}{2m+1}=1+\frac{1}{2m+1}\)
\(\Rightarrow y=m\left(\frac{2m+2}{2m+1}\right)-m=\frac{2m^2+2m}{2m+1}-m=\frac{m}{2m+1}\)
vì \(x>1;y>0\) \(\Rightarrow\left\{{}\begin{matrix}1+\frac{1}{2m+1}>1\\\frac{m}{2m+1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{2m+1}>0\\\frac{m}{2m+1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\m>0\end{matrix}\right.\Leftrightarrow m>0\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):
$m(m+1-my)+y=3m-1$
$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$
$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$
Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$
$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$
Có:
$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$
$\Leftrightarrow -1< m< 0$
Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.
hệ có nghiệm duy nhất <=> \(\dfrac{1}{m}\ne\dfrac{m}{-2}\)\(\Leftrightarrow m^2\ne-2\) đúng \(\forall m\)
vây hệ luôn có nghiệm duy nhất là x=\(\dfrac{m+4}{m^2+2}\) và y=\(\dfrac{2m-1}{m^2+2}\)
theo giả thiết x>0 , y>0 =>
\(\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+4>0\\2m-1>0\end{matrix}\right.\)vì m2+2>0 \(\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-4\\m>\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow m>\dfrac{1}{2}\)