K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

a,Áp dụng hệ thức lượng trong tam giác:

+) Tam giácACE , có :

\(AC^2=AB.AE\left(1\right)\)

+) Tam giác ACF , có :

\(AC^2=AD.\text{AF}\left(2\right)\)

Từ (1) và (2) =>AB.AE=AD=AF             (đpcm)

1 tháng 5 2020

mình không vẽ hình nhé

a) \(\Delta ABD~\Delta AFE\left(g.g\right)\Rightarrow\frac{AB}{AF}=\frac{AD}{AE}\Rightarrow AB.AE=AD.AF\)

b) AM cắt BD tại H

Xét \(\Delta AEF\)có M là trung điểm EF

\(\Rightarrow AM=MF=ME\)

\(\Rightarrow\Delta AMF\)cân tại M

\(\Rightarrow\widehat{MAF}=\widehat{MFA}=\widehat{ABD}\)

Mà \(\widehat{ABD}+\widehat{ADB}=90^o\Rightarrow\widehat{MAF}+\widehat{ADB}=90^o\)

\(\Rightarrow\widehat{AHD}=90^o\Rightarrow AM\perp BD\)

c) vì AK là dây chung của hai đường tròn ( O ) và ( M ) nên \(OM\perp AK\)

Xét \(\Delta AMS\)có MO và AO là đường cao nên O là trực tâm

\(\Rightarrow SO\perp AM\)( 1 )

Mà \(BD\perp AM\)( 2 )

Từ ( 1 ) và ( 2 ) nên B,D,S thẳng hàng

7 tháng 6 2017

a) xét (o) ta có : OA = OD = R

\(\Rightarrow\) \(\Delta\) OAD cân tại O \(\Rightarrow\) OAD = ODA

xét \(\Delta\) ABD ta có : ABO + ADO = 90 (\(\Delta\) ABD vuông tai A)

xét \(\Delta\) ACF ta có : CFA + CAD = 90 (\(\Delta\) ACF vuông tại C )

mà CAD = OAD đồng thời ADO = OAD (chứng minh trên)

\(\Rightarrow\) ABO = CFA

xét \(\Delta\) ABD và \(\Delta\) AFE

ta có : A chung

ABO = CFA (chứng minh trên)

\(\Rightarrow\) \(\Delta\) ABD đồng dạng \(\Delta\) AFE

\(\Rightarrow\) \(\dfrac{AB}{AF}\) = \(\dfrac{AD}{AE}\) \(\Leftrightarrow\) AB . AE = AD . AF (ĐPCM)

6 tháng 6 2017

Cần gấp

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0