K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

a) Gọi giao điểm của MN và BC là P (bạn kẻ sẵn rồi)

Xét \(\Delta ABH\)có M và N lần lượt là trung điểm của AH, BH \(\Rightarrow\)MN là đường trung bình của \(\Delta ABH\)

\(\Rightarrow\hept{\begin{cases}MN//AB\\MN=\frac{1}{2}AB\end{cases}}\)Mà tứ giác ABCD là hình chữ nhật \(\Rightarrow\hept{\begin{cases}AB//CD\\AB=CD\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}MN//CD\\MN=\frac{1}{2}CD\end{cases}}\)Vì \(CQ=\frac{1}{2}CD\)(do Q là trung điểm CD(gt))

\(\Rightarrow\hept{\begin{cases}MN//CQ\\MN=CQ\end{cases}}\)

Tứ giác MNCQ có MN//CQ và MN = CQ (cmt) \(\Rightarrow\)Tứ giác MNCQ là hình bình hành.

\(\Rightarrow\)CN//MQ 

Dễ thấy \(QC\perp BC\); lại có MN//CQ (cmt) \(\Rightarrow MN\perp BC\Rightarrow\)MP là đường cao của \(\Delta BMC\)

Xét \(\Delta BMC\)có 2 đường cao BH và MP cắt nhau tại N \(\Rightarrow\)N là trực tâm của \(\Delta BMC\)

\(\Rightarrow\)\(CN\perp BM\)

Mặt khác CN // MQ (cmt) \(\Rightarrow BM\perp MQ\Rightarrow\widehat{QMB}=90^0\)

25 tháng 12 2020

(tự vẽ hình nha)

a,Ta có AM+MB=AB

NC+CD=DC

mà AB=CD(ABCD là HCN)

AM = NC (gt)

=> MB=DN (1)

Ta lại có AB//DC nên MB//DN (2)

Từ (1) và (2) => MBND là HBH

b,ta có : P là trung điểm AB

K là trung điểm AH 

=>PK là đường trung bình tam giác AHB

=PK//BH (*)

mà BH//DM (MBND là HBH) (**)

từ (*) và (**) => PK//DM (ĐPCM)

c,do PK là đường trung bình 

=>PK=1/2BH 

=>PK = BH/2 = 6/2 =3cm

P là trung điểm AB 

=> AP = 1/2AB = AB/2 = 10/2 = 5cm

ta có BH⊥AC mà BH//PK => AC⊥PK

=>△APK vuông tại K

SAPK  là = 1/2AK.KP = 1/2.5.3 = 7,5

phần d mình chưa nghĩ ra

16 tháng 8 2020

a) tứ giác AMHN có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\) => tứ giác AMHN là hình chữ nhật

b) vì O đối dứng H qua M => OM=MH

        E đối xứng H qua N => HN=NE

xét tam giác HDE có \(\hept{\begin{cases}OH=MH\\HN=NE\end{cases}\Rightarrow}\)MN là đường trung bình tam giác HDE

=> MN//DE lại có MA // NE => MAEN là hình bình hành

c) có MAEN là hình bình hành => MN=AE

MN là đường trung bình tam giác HDE => \(MN=\frac{1}{2}DE\)

=> \(AE=\frac{1}{2}DE\)=> A là trung điểm DE