Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H 8cm 6cm
Giải
a) Xét\(\Delta AHB\)và\(\Delta BCD\)có:
\(\widehat{AHB}=\widehat{BCD}=90^o\)
\(\widehat{ABH}=\widehat{BDC}\) (so le trong)
=>\(\Delta AHB~\Delta BCD\) (g.g)
b) Xét\(\Delta AHD\)và\(\Delta AHB\)có:
\(\widehat{AHD}=\widehat{BHA}=90^o\)
\(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))
=>\(\Delta AHD~\Delta AHB\) (g.g)
Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)
Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)
c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:
\(BD^2=BC^2+DC^2\)
\(BD^2=6^2+8^2\)
\(BD^2=36+64\)
\(BD=\sqrt{100}=10\left(cm,BD>0\right)\)
Xét tam giác vuông ABD có:
\(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)
Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:
\(AB^2=AH^2+HB^2\)
\(8^2=4,8^2+HB^2\)
\(HB^2=8^2-4,8^2\)
\(HB^2=40,96\)
\(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)
=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)
Còn HC bn tự tính nhé!
#hoktot<3#
a, Vì ABCD là hình chữ nhật nên AB// DC => góc ABD = BDC ( hai góc đối đỉnh)
Xét tam giác AHB và tam giác BCD có
góc AHB = góc BCD =90 ĐỘ
góc ABD = BDC ( cmtrên)
Suy ra .............( g.g)
Vì ABCD là hcn nên AB =DC =20
BC=AD=15
Theo định lí Pitago trong tam giác BCD
\(BD^2=BC^2+DC^2\)
\(BD^2=20^2+15^2\)
\(BD^2=625\)
BD = 25
Theo a ta có \(\frac{AH}{AB}=\frac{BC}{BD}\)
NÊN \(AH=\frac{AB\cdot BC}{BD}\)
\(AH=\frac{20\cdot15}{25}\)
AH=12
c, d tự trả lời
e hình như dựa một chút vào tình chất đường phân giác trong tam giác
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔDEB vuông tại D có
góc HCD=góc DEB
=>ΔHCD đồng dạng với ΔDEB
=>DH/DB=CH/DE
=>DH*DE=DB*CH
=>DB*CH=DC^2
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169\)
=>\(BD=\sqrt{169}=13\left(cm\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=12\cdot5=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: Xét ΔBCD có CE là phân giác
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)
Xét ΔHAB vuông tại H và ΔADB vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHAB~ΔADB
=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)
=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)
=>\(EB\cdot HB=HA\cdot ED\)
a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:
\(DB^2=BC^2+CD^2\)
\(\Leftrightarrow DB^2=12^2+9^2=225\)
hay DB=15(cm)
Xét ΔBDC có
BE là đường phân giác ứng với cạnh DC
nên \(\dfrac{EC}{ED}=\dfrac{BC}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)
b: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: ED/EB=AD/AB
mà AD/AB=HB/AH
nên ED/EB=HB/AH
=>ED*AH=EB*HB