K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

Góc giữa 2 mp đó là góc sda. Suy ra sa=a căn3 . Do cd vuông ad , ca vuông sa nên cd vuông sad suy sad vuong scd tai sd. Từ a vẽ ah vuông sd là đươngf cao

 

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

16 tháng 8 2017

4 tháng 7 2017

8 tháng 5 2019

4 tháng 11 2017

 

Ai làm cho 10 coin;-;

31 tháng 1 2022

không làm thì có cho không :)) ?

24 tháng 11 2018

Đáp án C

Gọi H là trung điểm của CD, dễ thấy SH là đường cao của hình chóp.

 

Suy ra

Để ý rằng SB 2   =   SH 2   +   BH 2   =   SH 2   +   BC 2   +   CH 2 = 3 a 2 / 4   +   a 2   +   a 2 / 4   =   2 a 2 .

Suy ra BS = BD = a 2 , gọi K là trung điểm của SD ta có:

12 tháng 3 2019

Chọn C.

Ta có: 

Kẻ AH ⊥ SD, suy ra 

Từ đây ta có: SH là hình chiếu của SA lên (SCD).

Do đó: 

Theo giả thiết ta có:

Xét tam giác SAD vuông tại A, ta có:

Vậy