K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

a, Vì \(AE=CF\) và AE//CF (AB//CD) nên AECF là hbh

b, Ý bạn là O là giao điểm của AC và BD đúng k?

Vì ABCD là hbh mà O là giao điểm AC và BD nên O là trung điểm AC,BD

Ta có AECF là hbh

Mà O là trung điểm AC nên là trung điểm EF

Do đó O;E;F thẳng hàng

a: Ta có: AE+EB=AB

DF+FC=DC

mà AE=FC

và AB=DC

nên EB=DF

Xét tứ giác EBFD có 

EB//DF

EB=DF

Do đó: EBFD là hình bình hành

Suy ra: DE=BF

b: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

21 tháng 10 2021

1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF

Xét tứ giác AECF có AE//CF, AE=CF

=> AECF là hình bình hành

2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)

Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)

Suy ra O là trung điểm của EF

16 tháng 11 2021

Vì AE=CF và AE//CF (AB//CD do hbh ABCD) nên AECF là hbh

\(\left\{{}\begin{matrix}AE=CF\\AM=CN\\\widehat{A}=\widehat{C}\left(hbh.ABCD\right)\end{matrix}\right.\Rightarrow\Delta AME=\Delta CNF\left(c.g.c\right)\\ \Rightarrow ME=NF\left(4\right)\\ \left\{{}\begin{matrix}AE=CF\\AB=CD\end{matrix}\right.\Rightarrow AB-AE=CD-CF\Rightarrow BE=DF\left(1\right)\\ \left\{{}\begin{matrix}AM=CN\\AD=BC\end{matrix}\right.\Rightarrow AD-AM=CN-BC\Rightarrow DM=BN\left(2\right)\)

ABCD là hbh nên \(\widehat{B}=\widehat{D}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\Delta DMN=\Delta BFE\left(c.g.c\right)\\ \Rightarrow MN=EF\left(5\right)\)

(4)(5) suy ra MENF là hbh

 

10 tháng 9 2021

a,Ta có ABCD là hình bình hành nên AB//CD (t/c hbh) => AE//DF và BE//CF (đpcm)

b, Xét tứ giác AEFD có AE//DF(cmt) và AD//EF(gt) nên tứ giác AEDF là hbh ( theo dấu hiệu nhận biết hbh)(đpcm)

c,Ta có AD//BC (ABCD là hbh) và EF//AD(gt) nên EF//BC

Xét tứ giác BEFC có BE//CF(cmt) và È//BC(cmt) nên tứ giác BEFC là hbh ( theo dấu hiệu nhận biết hbh) (đpcm)

Chúc học tốt!

21 tháng 8 2019

A B C D E F M N O

Gọi O là giao điểm 2 đường chéo AC và BD

Xét \(\Delta\)AOE và \(\Delta\)COF có:AO=OC ( vì ABCD là hình bình hành ),CF=AE ( giả thiết ),^AOE=^COF ( đối đỉnh )

a

Vì vậy \(\Delta AOE=\Delta COF\left(c.g.c\right)\Rightarrow OE=OF\left(1\right)\)

Xét \(\Delta\)BON và \(\Delta\)DOM có:OB=OD ( vì ABCD là hình bình hành ),MD=BN ( vì AM=CN ),^MOD=^NOB ( đối đỉnh )

Vì vậy \(\Delta BON=\Delta COM\left(c.g.c\right)\Rightarrow OM=ON\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra tứ giác EMFN là hình bình hành.

b

Hình bình hành EMFN có O là giao điểm của 2 đường chéo,tứ giác ABCD có O là giao điểm của 2 đường chéo.

=> ĐPCM

P/S:Mik ko chắc lắm đâu nha,nhất là câu b ý:p