Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình bình hành
=> AB = CD
=> AD = BC
=> BAD = BCD
=> ABC = ADC
Ta có :
AI + IB = AB
KC + KD = CD
Mà AB = CD (cmt)
=> IB = KD
Xét ∆IBJ và ∆LDK ta có :
BJ = DL
DK = BI
ABC = ADC (cmt)
=> ∆IBJ = ∆LDK(c.g.c)
=> JI = LK ( tương ứng) (1)
Ta có :
AL + LD =AD
BJ + JC = BC
Mà BC = AD
=> LD = CJ
Xét ∆IAL và ∆JCK ta có :
AI = KC (gt)
JC = AL (cmt)
BAD = BCD (cmt)
=> ∆IAL = ∆JCK(c.g.c)
=> LI = JK ( tương ứng) (2)
Từ (1) và (2) ta có :
=> ILKJ là hình bình hành
=> AC và BD cắt nhau tại trung điểm mỗi đường
=> AC và BD cắt nhau tại trung điểm AC (*)
Xét ∆ABJ và ∆DLC ta có :
AB = CD(cmt)
ABC = ADC(cmt)
BJ = CL (gt)
=> ∆ABJ = ∆DLC (c.g.c)
=> JA = LC ( tương ứng) (3)
Mà AL = JC (cmt) (4)
Từ (3) và (4) ta có :
=> JALC là hình bình hành
=> AC và JL cắt nhau tại trung điểm mỗi đường
=> AC và JL cắt nhau tại trung điểm AC(**)
Mà JILK là hình bình hành
=> IK và LJ cắt nhau tại trung điểm mỗi đường
=> IK và LJ cắt nhau tại trung điểm LJ(***)
Từ (*)(**)(***) AC , BD , IK , LJ đồng quy tại 1 điểm
a) Ta có: BI + AI = AB
KD + CK = CD
Mà AI = CK; AB = CD
⇒ BI = KD
Xét ΔIBJ và ΔKDL có:
IB = KD
∠(IBJ) = ∠(KDL) (do ABCD là hình bình hành)
BJ = LD (gt)
⇒ ΔIBJ = ΔKDL (c.g.c)
⇒ IJ = KL
Chứng minh tương tự: ΔJCK= ΔLAI
⇒ JK = IL
Vậy tứ giác IJKL là hình bình hành (các cạnh đối bằng nhau)
b) Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD ta có O là trung điểm của AC.
Lại có tứ giác AICK là hình bình hành (AI // CK và AI = CK )
⇒ đường chéo IK đi qua trung điểm O của AC.
Tứ giác IJKL là hình bình hành (cmt) ⇒ đường chéo JL đi qua trung điểm O của đường chéo IK.
Vậy bốn đường thẳng AC, BD, IK, JL đồng quy tại O.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔCDA có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2)suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a) QQ là trung điểm của ADAD
MM là trung điểm của ABAB
⇒QM⇒QM là đường trung bình của ΔABDΔABD
⇒QM∥=12BD⇒QM∥=12BD (1)
Tương tự PNPN là đường trung bình của ΔBCDΔBCD
⇒PN∥=12BD⇒PN∥=12BD (2)
Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)
⇒⇒ tứ giác MNPQMNPQ là hình bình hành.
Ta có: QQ là trung điểm của ADAD
JJ là trung điểm của ACAC
⇒QJ⇒QJ là đường trung bình của ΔACDΔACD
⇒QJ∥=12CD⇒QJ∥=12CD (1)
Tương tự KNKN là đường trung bình của ΔBCDΔBCD
⇒KN∥=12CD⇒KN∥=12CD (2)
Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)
⇒⇒ tứ giác JNKQJNKQ là hình bình hành.
b) Tứ giác MNPQMNPQ là hình bình hành
⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O
⇒O⇒O là trung điểm của MPMP và QNQN
Tứ giác INKQINKQ là hình bình hành
Có hai đường chéo là QNQN và KJKJ
OO là trung điểm của QNQN
⇒O⇒O là trung điểm của KJKJ
⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.
A B C D M N P Q K I O
a) Xét tam giác ADC có:
AQ=QD (Q trung điểm AD)
DP=PC (P trung điểm DC)
=> QP là đường trung bình tam giác ADC ()
=> QP//AC;QP=\(\frac{1}{2}AC\)(1)
Xét tam giác ABC có:
AM=MB (M là trung điểm AB)
BN=NC (N là trung điểm BC)
=> MN là đường trung bình tam giác ABC (đn đường trung bình tam giác)
=> MN//AC;MN=\(\frac{1}{2}AC\)(2)
Từ (1) và (2)=> MN//QP (cùng //AC); MN=QP (=\(\frac{1}{2}AC\))
=> Tứ giác MNPQ là hình bình hành (dhnbhbh)
=> QN cắt PM tại O (*)
Xét tam giác ADB có:
DQ=QA (Q là trung điểm AD)
DK=KB (K là trung điểm DB)
=> QK là đường trung bình tam giác ADB (đn đường trung bình tam giác)
=> QK//AB,QK=\(\frac{1}{2}AB\)(3)
Xét tam giác ABC có:
IA=IC (I là trung điểm AC)
CN=NB (N là trung điểm CB)
=> IN là đường trung bình tam giác ABC (đn đường trung bình tam giác)
=> IN//AB;IN=\(\frac{1}{2}AB\)(4)
Từ (3) và (4) => IN//QK (cùng //AB);IN=QK (=\(\frac{1}{2}AB\))
=> Tứ giác QKNI là hình bình hành (dhnbhbh)
=> QN cắt IK tại O (**)
b)Từ (*) và (**)=> QN cắt PM cắt KI tại O
=> QN,PM,IK đồng quy tại O (đpcm)