K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có \(M\left(-1;-2\right)\)

Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)

                                     hay \(\Delta:y=9x+7\)

\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)

 

15 tháng 11 2017

+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1)  .

 Do K thuộc ( C)  và có hoành độ bằng -1, suy ra K( -1; -6m-3)

Khi đó tiếp tuyến tại K  có phương trình

∆: y= ( 9m+ 6) x+ 3m+ 3

Đường thẳng ∆ song song với đường thẳng d

⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1

Vậy không tồn tại m thỏa mãn đầu bài.

Chọn D.

29 tháng 4 2016

Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :

\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)

Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)

Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)

Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :

\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)

Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)

Từ đó ta có 2 tiếp tuyến cần tìm là :

\(y=15x-12\sqrt{6}-15\)

\(y=15x+12\sqrt{6}-15\)

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

21 tháng 12 2018

28 tháng 2 2017

+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2;  giao điểm của hai tiệm cận là

 I (1; 2) .

 Lấy điểm  M ( a ;   b )   ∈ C ⇒ b = 2 a - 1 a - 1   ( a > 1 ) .

+ Phương trình tiếp tuyến của (C )  tại M là  y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1

+ Phương trình  đường thẳng MI  là  y = 1 ( a - 1 ) 2 ( x - 1 ) + 2

+ Tiếp tuyến tại M vuông góc với MI  nên ta có

- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔

Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là  M( 2; 3).

Chọn D.

15 tháng 12 2017

Tiếp tuyến của C vuông góc với đường thẳng y= -x + 2017 nên hệ số góc của tiếp tuyến là k 2  thỏa mãn  ( - 1 ) k 2   =   - 1   ⇒   k 2   =   1

Suy ra  k 2 = y ' = 1 ⇒ 3 x 2 - 4 x + 2 ⇔ 3 x 2 - 4 x + 2 = 0 ( * )

Vì x 1 ,   x 2  là nghiệm của (*) nên áp dụng Vi-ét ta có x 1 + x 2 = 4 3

Chọn C

30 tháng 11 2017

+ Do A thuộc (C ) nên  A( 1; 1-m) .

Đạo hàm y’ = 4x3-4mx nên y’ (1) = 4-4m .

+ Phương trình tiếp tuyến của (C)  tại A  là y- 1+ m= y’ (1) (x-1)  ,

 Hay (4-4m) x-y-3( 1-m) = 0.

+ Khi đó d ( B ; ∆ ) = - 1 16 ( 1 - m ) 2 + 1 ≤ 1  , Dấu ‘=’ xảy ra khi và chỉ khi  khi  m= 1.

Do đó khoảng cách từ  B đến ∆ lớn nhất bằng 1 khi và chỉ khi m= 1.

Chọn  B.

Tham khảo:

undefined

undefined

undefined