K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

12 tháng 11 2017

a)Để y là hàm số bậc nhất thì

\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)

Từ 2 điều trên suy ra m-2=0

                                  =>m=2

Vậy m=2

16 tháng 10 2020

m=2. Khi đó hàm số trở thành: f(x)= -4x-3

Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

17 tháng 1 2021

a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)

\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)

b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)

\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$

$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$

b.

Để hàm nghịch biến thì $1-m^2<0$

$\Leftrightarrow (1-m)(1+m)<0$

$\Leftrightarrow m> 1$ hoặc $m< -1$

Để hàm đồng biến thì $1-m^2>0$

$\Leftrightarrow (1-m)(1+m)>0$

$\Leftrightarrow -1< m< 1$