Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ta có: f(0)=9*02-2=-2
f(-1/3)=9*(-1/3)2-2=-1
f(\(3\sqrt{2}\)
P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu
\(a)\) \(y=f\left(x\right)=4x^2-5\)
\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)
\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b)\) \(f\left(x\right)=-1\)
\(\Leftrightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)
Và \(f\left(-x\right)=k\left(-x\right)=-kx\)
Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)
\(a.\)
Theo đề , ta có : \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\)
\(f\left(3\right)=4.\left(3\right)^2-5=31\)
\(f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b.\)
Ta có : \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Rightarrow4x^2=-1+5=4\)
\(\Rightarrow x^2=4:4=1\)
\(\Rightarrow x=\sqrt{1}=1\)
\(c.\)
Ta có :
\(f\left(x\right)=4x^2-5\)
\(\Rightarrow f\left(x\right)=4.\left(x\right)^2-5\) \(\left(1\right)\)
\(f\left(-x\right)=4.\left(-x\right)^2-5=4.\left(x\right)^2-5\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow f\left(x\right)=f\left(-x\right)\)
a: f(5)=|5-3|-3=2-3=-1
f(-2)=5-3=2
\(f\left(\sqrt{10}\right)=\sqrt{10}-3-3=\sqrt{10}-6\)
\(f\left(\sqrt{3}\right)=3-\sqrt{3}-3=-\sqrt{3}\)
b: f(x)=9
=>|x-3|=12
=>x-3=12 hoặc x-3=-12
=>x=15 hoặc x=-9
f(x)=-3
=>|x-3|=0
=>x=3