\(\left(\dfrac{1}{2}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

a: f(-2)-g(1/2)

\(=5\left(-2\right)-3+4\cdot\dfrac{1}{2}-1\)

\(=-10-4+2=-10-2=-12\)

b: \(2\cdot f^2\left(-3\right)-3\cdot g^2\left(-2\right)\)

\(=2\cdot\left[5\cdot\left(-3\right)-3\right]^2-3\cdot\left[\left(-4\right)\left(-2\right)+1\right]^2\)

\(=2\cdot\left(-18\right)^2-3\cdot9^2\)

\(=648-3\cdot81=405\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Các hàm số y = f(x) = 2/3 x và y = g(x) = 2/3 x + 3 là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

25 tháng 7 2018

a) Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x\)

Ta có : \(f\left(-2\right)=\dfrac{2}{3}.\left(-2\right)=-\dfrac{4}{3}\)

\(f\left(-1\right)=\dfrac{2}{3}.\left(-1\right)=-\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{2}{3}.0=0\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

\(f\left(1\right)=\dfrac{2}{3}.1=\dfrac{2}{3}\)

\(f\left(2\right)=\dfrac{2}{3}.2=\dfrac{4}{3}\)

\(f\left(3\right)=\dfrac{2}{3}.3=2\)

b) Cho hàm số : \(y=g\left(x\right)=\dfrac{2}{3}x+3\)

\(g\left(-2\right)=\dfrac{2}{3}.\left(-2\right)+3=\dfrac{5}{3}\)

\(g\left(-1\right)=\dfrac{2}{3}.\left(-1\right)+3=\dfrac{7}{3}\)

\(g\left(0\right)=\dfrac{2}{3}.0+3=3\)

\(g\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}+3=\dfrac{10}{3}\)

\(g\left(1\right)=\dfrac{2}{3}.1+3=\dfrac{11}{3}\)

\(g\left(2\right)=\dfrac{2}{3}.2+3=\dfrac{13}{3}\)

\(g\left(3\right)=\dfrac{2}{3}.3+3=5\)

c) Khi \(x\)lấy cùng một giá trị thì giá trị của \(g\left(x\right)\) lớn hơn giá trị của \(f\left(x\right)\)\(3\) đơn vị.

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

15 tháng 6 2019

\(f\left(2\right)=5.2+1=11\)

\(f\left(-1\right)=-5+1=-4\)

\(\Rightarrow a=11+4=15\)

\(\Rightarrow g\left(1\right)=15.1+3=18\)

2 tháng 6 2017

ta có x=1 , thế vào f(x)

2 tháng 6 2017

x=1/2

11 tháng 10 2017

1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)

\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)

\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)

\(=\left(-1\right)^5+\left(-2x-2\right)^6\)

Xong

11 tháng 10 2017

5) Lợi dụng AM-GM :v

\(a^4+a^4+a^4+b^4\ge4a^3b\)

\(b^4+b^4+b^4+a^4\ge4b^3a\)

\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)

15 tháng 11 2016

các bạn giúp mình bài này nha

15 tháng 1 2018

bổ xung định lý thứ 5

f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá