Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)
a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)
Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)
b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)
\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)
Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)
c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)
Pttt: \(y=-3x-1\)
d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)
Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3
\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)
Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:
1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)
Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn
3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)
b/ \(y'=4x^3-4x\)
c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)
d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)
e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)
Chủ câu hỏi còn sống kh ặk=))?Eoo ôi bài khó tkế,tuii kh bíc làmm đôuu nòoo,còn sống thỳy nkắnn tin vớii tuii cko vuii nèeee<333
y' =4X^(3)-2X
vuông góc =>f'(X0)=-1(-1/a;a=1)
=> 4x^(3) +2X+1=0(f'(X0)=-1)
X=sqrt(2)/2
x=-sqrt(2)/2
x=0
<=>
y 0=(thế 3 cái X trên vào f'(X0))=>3 cái y 0 đấy
y=(thế 3 cái X trên vào y )=> y
rồi bỏ vào công thức y=f'(x0)(X-X0)+Y0
tốn pin tốn..........
tự tính
sai thì thôi....!
do tiếp tuyến vuông góc với pt đt d= x+2y-3 <=>
y= \(\dfrac{3-x}{2}\)
nên pttt có hsg k= 2
y' = 4x3-2x
ta có: 4x3-2x = 2
<=> \(\left[{}\begin{matrix}x=1\\4x^2+4x+2=0\end{matrix}\right.\) (vn)
=> y = 3
vậy pttt: y = 2(x-1)+3
<=> y = 2x +1
\(y'=3x^2-6x\)
a/ Giao điểm (C) với Oy \(\Rightarrow x_0=0\Rightarrow\left\{{}\begin{matrix}y'\left(0\right)=0\\y\left(0\right)=2\end{matrix}\right.\)
Phương trình tiếp tuyến: \(y=0\left(x-0\right)+2\Leftrightarrow y=2\)
b/ Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng 9
\(\Rightarrow3x_0^2-6x_0=9\Rightarrow x_0^2-2x_0-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=-1\Rightarrow y\left(-1\right)=-2\\x_0=3\Rightarrow y\left(3\right)=2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=9\left(x+1\right)-2\\y=9\left(x-3\right)+2\end{matrix}\right.\)
\(\left(m^2-3m-5\right)x-y-2m+19=0\)
\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)
Ta có:
\(f'\left(x\right)=-3x^2+4x-1\)
\(f'\left(2\right)=-5\)
Phương trình tiếp tuyến tại A:
\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)
Để hai đường thẳng song song:
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)
\(\Leftrightarrow m=0\)