Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=ax+b\Rightarrow\left\{{}\begin{matrix}f\left(2x-1\right)=a\left(2x-1\right)+b=2ax-a+b\\f\left(2x+1\right)=a\left(2x+1\right)+b=2ax+a+b\end{matrix}\right.\)
\(f\left(2x-1\right)+f\left(2x+1\right)-f\left(x\right)=x+3\)
\(\Leftrightarrow2ax-a+b+2ax+a+b-ax-b=x+3\)
\(\Leftrightarrow3ax-x+b-3=0\)
\(\Leftrightarrow\left(3a-1\right)x+\left(b-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-1=0\\b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=\frac{1}{3}x+3\)
Từ biểu thức của số trung bình cộng ta suy ra:
\(na=a_1+a_2+.....+a_n\).
Nếu tất cả các số: \(a_1,a_2,a_3,....,a_n\) đều nhỏ hơn a thì rõ ràng:
\(a_1+a_2+a_3+....+a_n< na.\)
Như vậy đẳng thức \(na=a_1+a_2+.....+a_n\) không xảy ra. ( Mâu thuẫn).
Ta có đpcm.
Bạn coi lại đề, ko có khái niệm 2 tập hợp lớn hơn / nhỏ hơn nhau
Nên \(D_2< D_1\) là vô nghĩa
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
\(f\left(x\right)\) xác định khi \(\frac{x-4}{1-x}\ge0\Leftrightarrow1< x\le4\)
\(g\left(x\right)\) xác định khi \(\frac{x^2+7x-10}{\left(3-x\right)^{2019}}=\frac{\left(x-2\right)\left(5-x\right)}{\left(3-x\right)^{2019}}\ge0\) \(\Rightarrow\left[{}\begin{matrix}2\le x< 3\\x\ge5\end{matrix}\right.\)
Giao lại ta được: \(2\le x< 3\)
Đề bài thiếu rồi bạn, cần hạn chế hàm \(f\left(x\right)\) vì hàm \(f\left(x\right)\) bất kì thì miền xác định D của nó cũng bất kì.
Nếu hàm \(f\left(x\right)\) có miền xác định ko đối xứng (ví dụ \(y=\sqrt{x}\)) thì không thể tách thành 2 hàm chẵn lẻ vì \(f\left(x\right)=g_1\left(x\right)+g_2\left(x\right)\) thì đương nhiên \(g_1\left(x\right)\) và \(g_2\left(x\right)\) cùng miền xác định với \(f\left(x\right)\). Mà một hàm số có miền xác định không đối xứng thì không thể là hàm chẵn hay hàm lẻ.