Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi pt đt d cần tìm là: y=ax+b
vì d đi qua M(0;-2) nên ta thay x=0, y=-2 vào d: \(-2=0a+b\Leftrightarrow b=-2\)=> (d): y=ax-2
xét pt: \(2x^2=ax-2\Leftrightarrow2x^2-ax+2=0\); \(\Delta=1-4.2.2=-15<0\Rightarrow\)d và P k giao nhau
=> k tìm đc đt d t/m
hình như đề sai bạn ạ. vì k tìm đc d nên câu b k làm đc luôn
Gọi đường thẳng cần tìm có đồ thị là (d): y = ax + b.
Xét phương trình hoành độ: \(x^2=ax+b\Leftrightarrow x^2-ax-b=0\) (1)
Để (d) tiếp xúc với (P) thì (1) sẽ có nghiệm kép.
Điều kiện để (1) có nghiệm kép là: \(\Delta_{\left(1\right)}=0\Leftrightarrow a^2+4b=0\) (2)
Mà đồ thị (d) tiếp xúc với (P) tại M(2;4) nên 2a + b = 4 (3)
Kết hợp (2) và (3) ta có HPT: \(\int^{a^2+4b=0}_{2a+b=4}\Leftrightarrow\int^{a^2+4\left(4-2a\right)=0}_{_{b=4-2a}}\Leftrightarrow\int^{a^2-8a+16=0}_{b=4-2a}\Leftrightarrow\int^{a=4}_{b=-4}\)
Vậy phương trình đường thẳng cần tìm là (d) : y = 4x - 4 ./.