Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (m^2+4)>0=> voi moi m
b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)
c) (m^2+2m+2=(m+1)^2+1>0 voi m=>f(x) luon dong bien=> dpcm
tong quat y=ax+b
DB khi a>0
NB khi a<0
hang so khi a=0
giai
a. với giá trị nào của m thì hàm số y= ( m2 +4)x +3 là hsđb :
=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m
b. với giá trị nào của m tì hàm số y= (m2 -2)x +31 là hsnb
a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)
c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R
ta ca
a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m
=> a>0 với mọi m=> y luôn đồng biến
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được:
\(\left(m^2-2m+3\right)\cdot2-4=8\)
\(\Leftrightarrow2m^2-4m+6-4-8=0\)
\(\Leftrightarrow2m^2-4m-6=0\)
\(\Leftrightarrow2m^2-6m+2m-6=0\)
\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)
\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)
a,nghịch biến x<0
`<=>4m+2<0`
`<=>4m< -2`
`<=>m< -1/2`
`b,(4m+2)x^2<=0`
Mà `x^2>=0`
`<=>4m+2<0`
`<=>4m<-2`
`<=>m<-1/2`
a) Để hàm số nghịch biến với mọi x<0 thì 4m+2>0
\(\Leftrightarrow4m>-2\)
hay \(m>-\dfrac{1}{2}\)
Vậy: Để hàm số nghịch biến với mọi x<0 thì \(m>-\dfrac{1}{2}\)
b) Để hàm số đạt giá trị lớn nhất là 0 thì 4m+2<0
hay \(m< -\dfrac{1}{2}\)