K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

1, bạn tự vẽ nha

2, xét pt: \(x^2=4x+m\Leftrightarrow x^2-4x-m=0\)(1) ; \(\Delta=16-4.-m=16+16m\)

 (dm) và (P) cắt nhau tại hai điểm phân biệt <=> pt có 2 nghiệm p.biệt <=> \(\Delta>0\Leftrightarrow16+16m>0\Leftrightarrow m>-1\)

th1: chọn tung độ của giao điểm 1 là 1 <=> y1=1<=> \(x1=\sqrt{y1}=\sqrt{1}=1\)\(x1=\frac{4+\sqrt{16\left(m+1\right)}}{2}=\frac{4\left(1+\sqrt{m+1}\right)}{2}=2+2\sqrt{m+1}\)

thay x=1 vào ta có: \(2+2\sqrt{m+1}=1\Leftrightarrow2\sqrt{m+1}=-1\Rightarrow\)PTVN

th2: y2=1 <=> x2=1

\(x2=\frac{4-\sqrt{16\left(m+1\right)}}{2}=2-2\sqrt{m+1}\). thay x2=1 vào: \(2-2\sqrt{m+1}=1\Leftrightarrow-2\sqrt{m+1}=-1\Leftrightarrow\sqrt{m+1}=\frac{1}{2}\Leftrightarrow m+1=\frac{1}{4}\Leftrightarrow m=-\frac{3}{4}\)(t/m đk)

=> m=-3/4 thì (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó tung độ của một trong hai giao điểm đó bằng 1.

13 tháng 5 2020

16-4(-m)=16+16m ??:D??

30 tháng 5 2016

Xét phương trình hoành độ giao điểm của (P) và (d) :

\(x^2+2x+m=0\)\(\Delta'=4-m\)

Vì (P) và (d) cắt nhau tại hai điểm phân biệt nên \(\Delta'>0\Rightarrow m< 4\)

Theo hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_A+x_B=-2\\x_A.x_B=m\end{cases}}\)

\(\frac{1}{x_A^2}+\frac{1}{x_B^2}=6\Leftrightarrow\)\(\frac{x^2_A+x^2_B}{x_A^2.x_B^2}=6\Leftrightarrow\frac{\left(x_A+x_B\right)^2-2x_A.x_B}{x_A^2.x^2_B}=6\Rightarrow\frac{4-2m}{m^2}=6\Leftrightarrow6m^2+2m-4=0\Rightarrow m=-1\)hoặc \(m=\frac{2}{3}\)

17 tháng 6 2017

xset pt tg giao đc đk của m là m > -4

áp dụng viet  ;

                          x1 .x2 = -m    

                          x1 + x2 =4

vì tọa độ cát có   tung độ là 1 suy ra x1 hoắc x2 =1 thế vào viet tìm m = -3 ( tm m > -4 )suy ra m =-3 thf cắt tại 2 điểm pb trong đó....