Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ý 1 để bạn tự vẽ nhé
2. Xét phương trình hoành độ giao điểm :
\(x^2=5x+6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\) tương ứng hai nghiệm trên ta có tọa độ của hai giao điểm là ( -1,1) và (6,36)
3. d' song song với d nên suy ra d' có dạng : \(y=5x+m\text{ với }m\ne6\)
phương trình hoành độ giao điểm khi đó là : \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\text{ có hai nghiệm x1 x2 thỏa mãn }x_1.x_2=24\)
mà theo viet ta có : \(x_1.x_2=\frac{c}{a}=-m\Rightarrow m=-24\)
Thay lại phương trình ta có : \(x^2-5x+24=0\text{ vô nghiệm, do đó không tồn tại d' thỏa mãn đề bài}\)
HD: (d'): y= ax+b (a≠0).
- (d') // (d) nên \(\left\{{}\begin{matrix}a=5\\b\ne6\end{matrix}\right.\)⇒ (d'): y=5x+b
- Xét Pt hoành độ giao điểm của (P) với (d'):
x2=5x+b ⇔x2-5x-b =0 (1).
*) điện kiện có 2 nghiệm
*) theo viet P=-b=24 => b=-24
Phương trình hoành độ giao điểm của (d) và (P):
=> x^2 = (2m+2)x-m^2-2m
<=>x^2 -(2m+2)x+m^2+2m=0
(a=1;b=-(2m+2);c=m^2+2m)
Để 2 (d) cắt (P) tại 2 điểm phân biệt => \(\Delta\) >0
<=> (2m+2)^2-4(m^2+2m)>0
<=> 4m^2+8m+4-4m^2-8m>0
<=> 4>0 (luôn đúng)
Theo hệ thức Vi ét ta có: \(\hept{\begin{cases}x1+x2=2m+2\\x1.x2=m^2+2m\end{cases}}\)
x1+x2=5 <=> 2m+2=5 <=> 2m=3 <=> m=3/2.
(Mình cứ thấy nó sai sai và thiếu thiếu sao ý, cái đề ý)
1: PTHĐGĐ là:
x^2-x-2=0
a=1; b=-1; c=-2
Vì a*c<0
nên (D) cắt (P) tại hai điểm phân biệt
x^2-x-2=0
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
Khi x=2 thì y=4
Khi x=-1 thì y=(-1)^2=1
=>A(2;4); B(-1;1)
2: \(OA=\sqrt{2^2+4^2}=2\sqrt{5};OB=\sqrt{\left(-1\right)^2+1^2}=\sqrt{2}\)
\(AB=\sqrt{\left(-1-2\right)^2+\left(1-4\right)^2}=3\sqrt{2}\)
Vì BA^2+BO^2=OA^2
nên ΔOAB vuông tại B
=>S BOA=1/2*BO*BA=1/2*căn 2*3*căn 2=3
1) xét phương trình hoành độ giao điểm của (d) và (p)
ta có : \(x^2=2\left(m+2\right)x-m-1\)
\(\Leftrightarrow x^2-2\left(m+2\right)x+m+1=0\) (1)
thay \(m=\dfrac{-3}{2}\) vào (1) ta có (1) \(\Leftrightarrow\) \(x^2-x-\dfrac{1}{2}=0\)
\(\Leftrightarrow2x^2-2x-1=0\)
\(\Delta'=\left(-1\right)^2-2\left(-1\right)=1+2=3>0\)
\(\Rightarrow\) phương trình có 2 nghiện phân biệt
* \(x_1=\dfrac{1+\sqrt{3}}{2}\Rightarrow y=\left(\dfrac{1+\sqrt{3}}{2}\right)^2=\dfrac{2+\sqrt{3}}{2}\)\(A\left(\dfrac{1+\sqrt{3}}{2};\dfrac{2+\sqrt{3}}{2}\right)\)
* \(x_2=\dfrac{1-\sqrt{3}}{2}\Rightarrow y=\left(\dfrac{1-\sqrt{3}}{2}\right)^2=\dfrac{2-\sqrt{3}}{2}\) \(B=\left(\dfrac{1-\sqrt{3}}{2};\dfrac{2-\sqrt{3}}{2}\right)\)
vậy ................................................................................................