Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(y=x^2-2x+1\), có: \(a=1>0;b=-2;c=1\)
+ Tập xác định: \(D=R\)
+ Nghịch biến trên: \(\left(-\infty;1\right)\); đồng biến trên \(\left(1;+\infty\right)\)
Bảng biến nhiên:
x | \(-\infty\) 1 \(+\infty\) |
y | \(+\infty\) → 0 → \(-\infty\) |
+ Đồ thị hàm số parabol có:
Đỉnh: \(A\left(1;0\right)\)
Trục đối xứng là đường thẳng x = 1
Giao điểm với Oy tại \(B\left(0;1\right)\), điểm đối xứng với B qua đường thẳng x = 1 là \(C\left(2;1\right)\)
Đi qua các điểm \(\left(-1;4\right);\left(3;4\right)\)
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
a: \(\left\{{}\begin{matrix}x_I=\dfrac{3}{2\cdot1}=\dfrac{3}{2}\\y_I=-\dfrac{\left(-3\right)^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{17}{4}\end{matrix}\right.\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)
c: Điểm M,N ở đâu vậy bạn?
Ở đây a = 2; b = -2; c = -2. Ta có Δ = ( - 1 ) 2 - 4 . 2 . ( - 2 ) = 17
Trục đối xứng là đường thẳng x = 1/4; đỉnh I(1/4; -17/8) giao với trục tung tại điểm (0; -2).
Để tìm giao điểm với trục hoành ta giải phương trình
Vậy các giao điểm với trục hoành là
Trục đối xứng x = -1/4; đỉnh I(-1/4; -17/8) giao với trục tung tại điểm (0;2); giao với trục hoành tại các điểm