Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
Vậy tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là 1.
Chọn C
+ Ta có đạo hàm y’ = x2- 2mx+ (m2-1).
Phương trình y’ =0 có ∆ ' = m 2 - ( m 2 - 1 ) = 1 ⇒ x 1 = m - 1 x 2 = m + 1
+ Không mất tính tổng quát, giả sử A ( x 1 ; y 1 ) , B ( x 2 ; y 2 ) .
A, B nằm khác phía khi và chỉ khi x1. x2< 0 hay ( m-1) (m+ 1) < 0
Suy ra -1< m< 1
A, B cách đều đường thẳng y= 5x-9 suy ra trung điểm I của AB nằm trên đường thẳng đó.
Khi đó ta có:
I ( x 1 + x 2 2 ; y 1 + y 2 2 ) h a y I ( m ; 1 3 m 3 - m )
Ta có:
1 3 m 3 - m = 5 m - 9 ⇔ 1 3 m 3 - 6 m + 9 = 0 ⇔ m 1 = 3 1 3 m 2 + m - 3 = 0
Suy ra m 1 + m 2 + m 3 = 3 + - 1 1 3 = 0 .
Chọn A