\(\left(m^2-9\right)x^2+\left(4m-3n\right)\left(m+n\right)x-5\)( m , n là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

Ta thấy rõ \(\left(m^2-9\right)x^2\)là hạng tử bậc hai, nên để hàm số đã cho là hsbn thì \(m^2-9=0\Leftrightarrow\left(m-3\right)\left(m+3\right)=0\Leftrightarrow\orbr{\begin{cases}m=3\\m=-3\end{cases}}\)

10 tháng 10 2017

Hàm số là hàm số bậc nhất khi và chỉ khi:\(\hept{\begin{cases}m^2+m-2=0\left(1\right)\\m^2+mn-2n^2\ne0\left(2\right)\end{cases}}\).
Giải(1):     \(m^2+m-2=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\).
Thay \(m=1\) vào (2) ta được \(1^2+1.n-2n^2\ne0\)\(\Leftrightarrow\left(2n+1\right)\left(1-n\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}n\ne1\\n\ne-\frac{1}{2}\end{cases}}\).

Thay \(m=-2\) vào (2) ta được:
 \(\left(-2\right)^2+\left(-2\right)n-2n^2\ne0\)
\(\Leftrightarrow-2n^2-2n+4\ne0\)
\(\Leftrightarrow\left(n-1\right)\left(n+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}n\ne1\\n\ne-2\end{cases}}\).
Vậy hàm số là hàm số bậc nhất khi và chỉ khi: \(m=1\) và \(\hept{\begin{cases}n\ne1\\n\ne-\frac{1}{2}\end{cases}}\) hoặc \(m=-2\) và \(\hept{\begin{cases}n\ne1\\n\ne-2\end{cases}}\).

6 tháng 10 2019

Chat sex không bạn? :) 

6 tháng 10 2019

Boy dâm 2k7 chat cái cc

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

NM
18 tháng 9 2021

Để hàm ssoo đã cho là hàm số bậc nhất thì 

a\(\frac{m}{2}\ne0\Leftrightarrow m\ne0\)
b\(3m+1\ne0\Leftrightarrow m\ne-\frac{1}{3}\)
c\(\hept{\begin{cases}\sqrt{5-m}\ne0\\5-m\ge0\end{cases}\Leftrightarrow m< 5}\)