K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

18 tháng 5 2019

Chọn D 

Xét hàm số 7af1T2CY4XHS.png.

RfalekgBUBaQ.png

aOczkEfJV1tj.pngaYsNDSzljTNQ.pngUF4yJOb1ogrC.png .

Ta lại có vju5Wc54jwqj.png thì 2jID4em9PkCG.png. Do đó JJhodGy51kPs.png thì cpGrriJgA2st.png.

mKebe5ZmHFD3.png thì sVT7jOs2C3uY.png. Do đó ZOYccuvVqHx0.png thì em9kxGoiS0pR.png.

Từ đó ta có bảng biến thiên của RAaomOLuvBkQ.png như sau

xoOsqe6siFZ5.png

Dựa vào bảng biến thiên, ta có

I. Hàm số lETzJPTAVdaj.png có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số WSPSO9eIJto5.pngđạt cực tiểu tại NL61oX2gG0Wp.png LÀ MỆNH ĐỀ SAI.

III. Hàm số Fh39qRlZRctR.pngđạt cực đại tại w8N78QnsGhAX.png LÀ MỆNH ĐỀ SAI.

IV. Hàm số id6pIDtshz1U.png đồng biến trên khoảng beFLyJnBXW09.png LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số zWoaI9WQVqcA.png nghịch biến trên khoảng I8Y5Xke6XPDp.png LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

3 tháng 9 2021

cách giải ntn ạ ?

 

NV
6 tháng 9 2021

\(f'\left(x\right)=\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x-2\right)=\left(x+1\right)^2\left(x-1\right)\left(x-2\right)\)

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (chỉ quan tâm nghiệm bội lẻ)

\(g'\left(x\right)=\left(1-2x\right)f'\left(x-x^2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\f'\left(x-x^2\right)=0\end{matrix}\right.\)

\(f'\left(x-x^2\right)=0\Rightarrow\left[{}\begin{matrix}x-x^2=1\\x-x^2=2\end{matrix}\right.\) (đều vô nghiệm)

\(\Rightarrow g\left(x\right)\) đồng biến khi \(x< \dfrac{1}{2}\) và nghịch biến khi \(x>\dfrac{1}{2}\)

\(\Rightarrow C\) đúng (do \(\left(-\infty;-1\right)\subset\left(-\infty;\dfrac{1}{2}\right)\)

NV
13 tháng 5 2019

\(g'\left(x\right)=-f'\left(3-x\right)=\left(x-3\right)\left(2-x\right)^2\left(\left(3-x\right)^2+9\left(3-x\right)+9\right)\)

Không cần quan tâm tới \(\left(2-x\right)^2\) do \(g'\left(x\right)\) ko đổi dấu khi đi qua điểm dừng này

\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\\left(3-x\right)^2+m\left(3-x\right)+9=0\left(1\right)\end{matrix}\right.\)

Để \(g\left(x\right)\) đồng biến trên \(\left(3;+\infty\right)\Rightarrow\left(1\right)\) vô nghiệm hoặc các nghiệm của (1) đều không lớn hơn 3

\(\left(1\right)\Leftrightarrow h\left(x\right)=x^2-\left(m+6\right)x+3m+18=0\)

\(\Delta=m^2-36\)

TH1: \(\Delta< 0\Rightarrow m^2-36< 0\Rightarrow-6< m< 6\)

TH2: \(\left\{{}\begin{matrix}\Delta\ge0\\h\left(3\right)>0\\\frac{m+6}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge6\\m\le-6\end{matrix}\right.\\9>0\\m< 0\end{matrix}\right.\) \(\Rightarrow m\le-6\)

Vậy \(m< 6\) thì \(g\left(x\right)\) đồng biến trên \(\left(3;+\infty\right)\Rightarrow\) có 5 giá trị nguyên dương

13 tháng 5 2019

A