Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Hình vẽ:
b. Vì điểm $A$ thuộc đths nên $A$ có tọa độ $(a,3a)$
$OA=\sqrt{a^2+(3a)^2}=2\sqrt{10}$
$\sqrt{10a^2}=2\sqrt{10}$
$10a^2=400$
$a=\pm 2$
Vậy tọa độ điểm A là $(2,6)$ hoặc $(-2,-6)$
a) Hàm số nghịch biến trên R <=> a < 0
<=> 2m - 1 < 0
<=> 2m < 1
<=> m < 1/2
b) Gọi điểm bị cắt là A ( x;y )
cắt trục hoành tại điểm có tọa độ -1
=> x = -1 ; y = 0
=> A ( -1 ; 0 )
Ta có y = ( 2m - 1)x + m - 1 cắt A ( -1;0 )
=> 0 = ( 2m -1 ). ( -1 ) + m - 1
<=> -2m + 1 + m - 1 =0
<=> -m = 0
<=> m = 0
Vậy khi m = 0 thì đồ thị của hàm số cắt trục hoành tại điểm có hoành độ -1
c) y x 0 1 4 M ( 1;4 ) y=(2m............ -1 E F H
Vì đồ thị của hàm số ( đtchs ) đi qua M(1;4) nên thay điểm M vào đtchs ta được:
4 = ( 2m - 1).1+m - 1
<=> 4 = 2m - 1 + m - 1
<=> 4 = 3m - 2
<=> 6 = 3m
<=> m = 2 ( 1 )
Gọi \(E\left(x_E;y_E\right)\)là điểm nằm trên trục tung vào được đtchs đi qua
Và ta có \(x_E=0\) ( vì xE trùng với góc tọa độ ) ( 2 )
Thay ( 1 ) và ( 2 ) vào đtchs ta được:
y = ( 2 . 2 - 1 ). 0 + 2 - 1
y = 2 - 1
y = 1
Áp dụng hệ thức lượng vào tam giác OEF vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OE^2}+\frac{1}{OF^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{1^2}+\frac{1}{\left(-1\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=2\)
\(\Leftrightarrow2OH^2=1\)
\(\Leftrightarrow OH^2=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}OH=\frac{\sqrt{2}}{2}\left(nhận\right)\\OH=-\frac{\sqrt{2}}{2}\left(loại\right)\end{cases}}\) ( loại -v2/2 vì độ dài không có giá trị âm )
Vậy khoảng cách từ gốc tọa độ O đến đường thẳng đó là \(\frac{\sqrt{2}}{2}\)
HỌC TỐT !!!!
b/ Vì A thuộc hàm số nên tọa độ A(t; - 3t)
Theo đề bài thì ta có
t2 + 9t2 = 10
<=> t2 = 1
<=> t = (1; - 1)
Vậy tọa độ A(1; - 3) hoặc A(- 1; 3)
Câu này câu a/ vẽ đồ thị nên bạn tự làm nhé