Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1. Để đồ thị của hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1 thì:
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
Vậy để 2 đồ thị trên song song với nhau thì m=-1 và m\(\ne\)-2
2. Vì đồ thị đi qua điểm (1;-4) nên ta có:
-4=m-1+m+3
\(\Leftrightarrow\) 2m=-6
\(\Leftrightarrow m=-3\)
Vậy để đồ thị đi qua điểm (1;-4) thì m=-3
a) y=(m-1)x+m+3 (d1) (a=m-1;b=m+3)
y=-2x+1 (d2) (a' =-2;b' =1)
vì hàm số (d1) song song với hàm số (d2) nên
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)
vậy với m= -1 thì hàm số (d1) song song với hàm số (d2)
b) vì hàm số (d1) đi qua điểm (1;-4) nên
x=1 ; y= -4
thay vào (d1) ta có
-4=m-1+m+3 (mình làm tắt ko nhân với 1 nha)
-4=2m+2
-2=2m
m=-1
\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)
Vậy (1) luôn đi qua A(-1;4)
a, Hàm số ĐB\(\Leftrightarrow\) a \(>\)0
\(\Leftrightarrow\) m-2 \(>\)0 \(\Leftrightarrow\) m \(>\)2
Vậy m\(>\)2 thì hàm số ĐB.
b,ĐTHS (*) // vs đt y=2x-1 \(\Leftrightarrow\)\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m-2=2\\2m+1\ne-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=4\left(tm\right)\\m\ne-1\end{cases}}\)
Vậy m=4;m\(\neq\)-1 thì ĐTHS (*) // vs đt y=2x-1
c,Gọi A(\(x_0;y_0\)) là điểm cố định mà ĐTHS (*) luôn đi qua vs mọi m
Thay x=\(x_0\) ,y=\(y_0\) vào pt đt (*) ta đc̣:
\(y_0=\left(m-2\right)x_02m+1\)\(\Leftrightarrow\)\(mx_0-2x_0+2m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+2\right)-2x_0+1-y_0=0\left(1\right)\)
Để đt (*) luôn đi qua A vs mọi m thì pt (1) luôn đúng vs mọi m ( pt (1) có vô số nghiệm m)
Điều này xảy ra \(\Leftrightarrow\hept{\begin{cases}x_0+2=0\\-2x_0+1-y_0=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_0=-2\\y_0=5\end{cases}}\)
\(\Rightarrow A\left(-2;5\right)\)
Vậy A(-2;5) là điểm cố định mà ĐTHS (*) luôn luôn đi qua vs mọi m
`y=(2m+2)x+m-1`
`<=>2mx+2x+m-1-y=0`
`<=>(2x+1)m+(2x-y-1)=0`
\(\Rightarrow\left\{{}\begin{matrix}2x+1=0\\2x-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-2\end{matrix}\right.\)
Vậy điểm cố định là: `(-1/2 ; -2)`.
Gọi điểm \(A\left(x_0,y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua
\(\Rightarrow y_0=\left(2m+2\right)x_0+m-1\Rightarrow2mx_0+2x_0+m-1-y_0=0\)
\(\Rightarrow m\left(2x_0+1\right)+2x_0-y_0-1=0\Rightarrow\left\{{}\begin{matrix}2x_0+1=0\\2x_0-y_0-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-2\end{matrix}\right.\)
\(\Rightarrow\) đồ thị hàm số luôn đi qua điểm \(A\left(-\dfrac{1}{2};-2\right)\)