K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

help me

 

AH
Akai Haruma
Giáo viên
11 tháng 2 2024

Bạn xem lại đã viết phương trình hàm số đúng chưa vậy?

12 tháng 9 2023

a)

- Vẽ đồ thị hàm số \(y = x\).

Cho \(x = 1 \Rightarrow y = 1 \Rightarrow \)Đồ thị hàm số đi qua điểm \(M\left( {1;1} \right)\).

Đồ thị hàm số \(y = x\) là đường thẳng đi qua hai điểm \(O\) và \(M\).

- Vẽ đồ thị hàm số \(y = x + 2\)

Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(A\left( {0;2} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 2}}{1} =  - 2\) ta được điểm \(B\left( { - 2;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 2\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

b) Góc tạo bởi hai đường thẳng  \(y = x\) và \(y = x + 2\) với trục \(Ox\) lần lượt là \({\alpha _1}\) và \({\alpha _2}\).

Dùng thước đo độ kiểm tra ta thấy số đo \({\alpha _1} = {\alpha _2} = 45^\circ \).

12 tháng 9 2023

Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).

Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đáp án đúng là C

Ta có: \(y = \dfrac{{ - x + 10}}{5} = \dfrac{{ - x}}{5} + \dfrac{{10}}{5} = \dfrac{{ - 1}}{5}x + 2\)

Vì hàm số \(y = \dfrac{{ - 1}}{5}x + 2\) có dạng \(y = ax + b\) nên đồ thị của hàm số là một đường thẳng với hệ số góc \(a = \dfrac{{ - 1}}{5}\).

Đồ thị hàm số cắt trục tung tại điểm \(A\left( {0;2} \right)\); Đồ thị hàm số cắt trục hoành tại điểm \(B\left( {10;0} \right)\).

Thay \(x = 200\) vào hàm số ta được: \(y = \dfrac{{ - 1}}{5}.200 + 2 =  - 40 + 2 =  - 38 \ne 50\). Do đó điểm \(\left( {200;50} \right)\)không thuộc đồ thị hàm số.

Vậy đáp án đúng là đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 10. 

24 tháng 11 2023

a: Thay x=1 và y=2 vào (d), ta được:

\(1\left(a-2\right)+b=2\)

=>a-2+b=2

=>a+b=4(1)

Thay x=3và y=-4 vào (d), ta được:

\(3\left(a-2\right)+b=-4\)

=>3a-6+b=-4

=>3a+b=2(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=4\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-3a-b=2\\a+b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2a=2\\a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4-a=4+2=6\end{matrix}\right.\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(a-2\right)+b=1-\sqrt{2}\)

=>\(b=1-\sqrt{2}\)

Vậy: (d): \(y=x\left(a-2\right)+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(2+\sqrt{2}\right)\left(a-2\right)+1-\sqrt{2}=0\)

=>\(\left(a-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(a-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(a=\dfrac{3\sqrt{2}}{2}\)

 

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì đt $y=ax+b$ song song với $y=2x+2019$ nên $a=2$

$y=ax+b$ cắt trục tung tại điểm có tung độ $2020$, nghĩa là $(0,2020)\in (y=ax+b)$

$\Leftrightarrow 2020=a.0+b$

$\Rightarrow b=2020$ 

Vậy $a=2; b=2020$

16 tháng 12 2023

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)

15 tháng 12 2023

Sửa đề: (d'): y=-4x+3

a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:

\(0\left(m+2\right)+m=0\)

=>m=0

b:

Sửa đề: Để đường thẳng (d)//(d')

Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)

=>m=-6

c: Sửa đề: cắt đường thẳng d'

Để (d) cắt (d') thì \(m+2\ne-4\)

=>\(m\ne-6\)

d: Để (d) trùng với (d') thì

\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)

=>\(m\in\varnothing\)