K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

y=5x5+10x4

=>y=5x4.x+5.2.x4

=>5x4(x+2)=y=0

\(\Rightarrow\int^{5x^4=0}_{x+2=0}\Rightarrow\int^{x=0}_{x=-2}\Rightarrow x\in\left\{-2;0\right\}\)

28 tháng 11 2015

x^2-25x^4=0

=>x^2-25x^2.x^2=0

=>x^2.(1-25x^2)=0

=>x=0 hoặc x^2=1/25

=>x thuộc {-0,2;0;0,2}

2) 2 giá trị

3)x^2+7x+12=0

=>x^2+3x+4x+3.4=0

=>x(x+3)+4(x+3)=0

=>(x+4)(x+3)=0

=>x=-3;x=-4

nhớ ****

28 tháng 11 2015

1)x thuộc {-0,2;0;0,2}

2)2 giá trị

3)x^2+3x+4x+4.3=0

=>x(x+3)+4(x+3)=0

=>(x+3)(x+4)=0

=>x=-4;x=-3

28 tháng 11 2015

1)x2-25x4=0

x2(1-25x2)=0

=>x^2=0              hoặc                  1-25x^2=0

x=0                                              25x^2=-1-0=1

                                                    x^2=1/25=(1/5)^2=(1/-5)^2

Vậy S={-1/5;0;1/5}

2)Có 3 giá trị là 0;1;2

3)có 2 giá trị là -3;-4

giup mk nheBài thi số 3Hãy điền số thích hợp vào chỗ … (Chú ý: Nếu đáp số là số thập phân thì phải viết là số thập phân gọn nhất và dùng dấu (,) trong bàn phím để đánh dấu phẩy trong số thập phân)Câu 1:Biết số học sinh của ba khối 7, 8, 9 tỉ lệ với 2; 3; 4, và tổng số học sinh của ba khối 7, 8, 9 là 252. Số học sinh của khối 7 là .Câu 2:Giá trị của biểu thức...
Đọc tiếp

giup mk nhe

Bài thi số 3

Hãy điền số thích hợp vào chỗ … (Chú ý: Nếu đáp số là số thập phân thì phải viết là số thập phân gọn nhất và dùng dấu (,) trong bàn phím để đánh dấu phẩy trong số thập phân)

Câu 1:
Biết số học sinh của ba khối 7, 8, 9 tỉ lệ với 2; 3; 4, và tổng số học sinh của ba khối 7, 8, 9 là 252. Số học sinh của khối 7 là .

Câu 2:
Giá trị của biểu thức 11/12*15/33+11/12*2/22+1/2 bằng 
 

Câu 3:
Nếu x/3 =y/4 và x+y=5   thì  7(x-y) = .

Câu 4:
Nếu x/2=y/6  và  x-y=2 thì x+y = .

Câu 5:
Nếu x:2=y:2<0 và  x^2+y^2 =20 thì x+y=

Câu 6:
Tập các số hữu tỉ thỏa mãn đẳng thức x^2-25x^4=0  là S= {}. (Nhập các phần tử dưới dạng số thập phân gọn nhất, theo giá trị tăng dần, ngăn cách nhau bởi dấu " ;").

Câu 7:
Cho tam giác có nửa chu vi là 12 cm và độ dài các cạnh tỉ lệ với các số 3; 4; 5. Độ dài cạnh lớn nhất của tam giác là cm.

Câu 8:
Nếu 1/2 của a bằng 2b thì 9/8a=kb.Vậy k=
(Nhập kết quả dưới dạng số thập phân gọn nhất).

Câu 9:
Giá trị của biểu thức b=x^2-2xy+y^2+5 khi x-y=5 là 

Câu 10:
Giá trị x<0 thỏa mãn:x^2-3x-4=0 là x=

1
22 tháng 11 2015

1/56

2/1

3/-5

4/-4

5/-6

6/-0.2;0;0.2

7/10

8/4.5

9/30

10/-1

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich