Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)
\(=x^2+mx^2+\left(-2m+2\right)x+m-3\)
\(=x^2+mx^2-2mx+2x+m-3\)
\(=m\left(x^2-2x+1\right)+x^2+2x-3\)
\(=m\left(x-1\right)^2+x^2+2x-3\)
Tọa độ điểm mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)
(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)
\(=x^2+mx^2-2mx+2x+m-3\)
\(=m\left(x^2-2x+1\right)+x^2+2x-3\)
\(=m\left(x-1\right)^2+x^2+2x-3\)
Tọa độ điểm cố định mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)
\(y\left(x+m+2\right)=mx-x+m+2\)
\(\Leftrightarrow\left(xy+2y+x-2\right)+m\left(y-x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}y-x-1=0\\xy+2y+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=x+1\\xy+2y+x-2=0\end{matrix}\right.\)
\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)+x-2=0\)
\(\Leftrightarrow x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-4\Rightarrow y=-3\end{matrix}\right.\)
Vậy đồ thị đi qua 2 điểm: \(A\left(0;1\right);B\left(-4;-3\right)\)
Câu 2 này đề đúng chứ?
\(y=2m^2x+2x+2m^2-m-4\)
\(\Leftrightarrow m^2\left(2x+2\right)+m.\left(-1\right)+\left(2x-y-4\right)=0\)
Điểm cố định là đồ thị hàm số luôn đi qua thỏa mãn:
\(\left\{{}\begin{matrix}2x+2=0\\-1=0\\2x-y-4=0\end{matrix}\right.\) (không tồn tại x;y thỏa mãn)
Vậy ko tồn tại điểm cố định mà ĐTHS luôn đi qua
\(\overrightarrow{BI}=3\overrightarrow{CI}=3\left(\overrightarrow{CB}+\overrightarrow{BI}\right)\Rightarrow\overrightarrow{BI}=\frac{3}{2}\overrightarrow{BC}\)
\(\overrightarrow{AJ}=\frac{2}{3}\overrightarrow{AC}\) ; \(\overrightarrow{AK}=\frac{1}{4}\overrightarrow{AB}\)
Vậy:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{3}{2}\overrightarrow{BC}\) (1)
\(\overrightarrow{JK}=\overrightarrow{JA}+\overrightarrow{AK}=-\frac{2}{3}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{AB}=-\frac{2}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\frac{1}{4}\overrightarrow{AB}\)
\(\overrightarrow{JK}=-\frac{5}{12}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}\Rightarrow\frac{12}{5}\overrightarrow{JK}=-\overrightarrow{AB}-\frac{8}{5}\overrightarrow{BC}\) (2)
Cộng vế với vế (1) và (2):
\(\overrightarrow{AI}+\frac{12}{5}\overrightarrow{JK}=-\frac{1}{10}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{BC}=-10\overrightarrow{AI}-24\overrightarrow{JK}\)
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
- a = 1 > 0 hàm số đồng biến trên R.
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)