K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 11 2021
Ta thấy rõ \(\left(m^2-9\right)x^2\)là hạng tử bậc hai, nên để hàm số đã cho là hsbn thì \(m^2-9=0\Leftrightarrow\left(m-3\right)\left(m+3\right)=0\Leftrightarrow\orbr{\begin{cases}m=3\\m=-3\end{cases}}\)
16 tháng 10 2020
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
Để đây là hàm số bậc nhất và nghịch biến thì
\(\left\{{}\begin{matrix}m^2-4=0\\\left(n-5m\right)\left(2m+n\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(5m-n\right)\left(2m+n\right)>0\end{matrix}\right.\)
TH1: m=2
=>(10-n)(4+n)>0
=>(n-10)(n+4)<0
=>-4<n<10
TH2: m=-2
=>(-10-n)(4+n)>0
=>(n+10)(n+4)<0
=>-10<n<-4