Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số y=(m-2)x+4+m là hàm số bậc nhất thì \(m-2\ne0\)
hay \(m\ne2\)
a) Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì
Thay x=1 và y=2 vào hàm số y=(m-2)x+4+m, ta được
\(\left(m-2\right)\cdot1+4+m=2\)
\(\Leftrightarrow m-1+4+m=2\)
\(\Leftrightarrow2m+3=2\)
\(\Leftrightarrow2m=-1\)
hay \(m=-\dfrac{1}{2}\)(nhận)
Vậy: Để đồ thị hàm số y=(m-2)x+4+m đi qua điểm A(1;2) thì \(m=-\dfrac{1}{2}\)
cho x=0=>y=m+3=>A(0;m+3)
cho y=0=>\(x=\dfrac{-m-3}{m-2}\)\(=>B\left(\dfrac{-m-3}{m-2};0\right)\)
vậy đồ thị hàm số trên là đường thẳng đi qua A(0,m+3) và B\(\left(\dfrac{-m-3}{m-2};0\right)\)
\(=>S\left(\Delta OAB\right)=1=\dfrac{OA.OB}{2}=\dfrac{\left(m+3\right)\left(\dfrac{-m-3}{m-2}\right)}{2}\)
\(=>m=..............\)(bạn tự tính)
......................?
mik ko biết
mong bn thông cảm
nha ................
Nếu m = 4 => y = -5
Đường thẳng y = -5 song song với trục Ox , khi đó sẽ ko có tam giác
=> m = 4 (loại)
Do đó m \(\ne\)4
O y x A B
*Tại x = 0 thì y = -5
=> Giao điểm của đths y = ( 4 - m )x - 5 với trục Oy là điểm A(0;-5)
\(\Rightarrow OA=\sqrt{\left(0-0\right)^2+\left[0-\left(-5\right)\right]^2}=5\)
*Tại y = 0 thì \(x=\frac{5}{4-m}\)
=> giao điểm của đths y = (4 - m)x - 5 với trục Ox là điểm \(B\left(\frac{5}{4-m};0\right)\)
\(\Rightarrow OB=\sqrt{\left(0-\frac{5}{4-m}\right)^2+\left(0-0\right)^2}=\frac{5}{\left|4-m\right|}\)
Vì \(S_{AOB}=3\)mà tam giác này vuông tại O
\(\Rightarrow OA.OB=3\)
\(\Leftrightarrow5.\frac{5}{\left|4-m\right|}=3\)
\(\Leftrightarrow\frac{25}{\left|4-m\right|}=3\)
\(\Leftrightarrow\left|4-m\right|=\frac{25}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}4-m=\frac{25}{3}\\4-m=-\frac{25}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-\frac{13}{3}\\m=\frac{37}{3}\end{cases}}\left(TmĐK:m\ne4\right)\)
Vậy \(m\in\left\{-\frac{13}{3};\frac{37}{3}\right\}\)thỏa mãn bài toán
vì đường thẳng cắt Ox;Oy => k -3 khác 0 => k khác 3
+ x =0 => y =k+2 A(0;k+2)
+ y =0 => x =\(\frac{k+2}{3-k}\) B(\(\frac{k+2}{3-k}\);0)
Diện tích AOB = 1/2 . OA.OB = 1/2 ./\(\frac{k+2}{3-k}.\left(k+2\right)\)/ = 2
\(\left(k+2\right)^2=4\)/3 -k/
+ với k > 3 => k2 +4k +4 =4 k -12 => k2 = -16 loại
+ k<3 => k2 +4k +4 = 12 - 4k => k2 +8k+16 =24=>(k+4)2 =24 => k =-4 +\(2\sqrt{6}\) loại ; k =-4 -\(2\sqrt{6}\)( TM)
Vậy k =-4 -\(2\sqrt{6}\)