K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

NV
23 tháng 10 2021

Đề bài không đúng em nhé

Đặt \(f\left(\left|x\right|\right)=t\) thì ứng với mỗi giá trị t chỉ cho tối đa 4 nghiệm x

Phương trình trở thành:

\(t-\left(m+1\right)\left|t\right|+m=0\)

\(\Leftrightarrow t-\left|t\right|=m\left(\left|t\right|-1\right)\) (1)

- Với \(t\ge0\) \(\Rightarrow t-t=m\left(t-1\right)\Leftrightarrow m\left(t-1\right)=0\)

+ Với \(m=0\Rightarrow\) pt có vô số nghiệm (ko thỏa mãn)

+ Với \(m\ne0\Rightarrow t=1\Rightarrow f\left(\left|x\right|\right)=1\) có tối đa 4 nghiệm (ktm)

- Với t<0, (1) trở thành:

\(2t=-m\left(t+1\right)\)

Với \(t=-1\) ko phải nghiệm, với \(t\ne-1\) pt trở thành:

\(-m=\dfrac{2t}{t+1}\) (2)

Do \(\dfrac{2t}{t+1}\) đồng biến trên R nên (2) có tối đa 1 nghiệm t

\(\Rightarrow f\left(\left|x\right|\right)=t\) có tối đa 4 nghiệm (ít hơn 8 nghiệm) \(\Rightarrow\) ktm

Do đó không tồn tại m thỏa mãn bài toán

26 tháng 1 2021

Đồ thị hàm số \(y=f\left(\left|x\right|\right)\)

\(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=1\left(2\right)\\f\left(\left|x\right|\right)=-m\left(3\right)\end{matrix}\right.\)

Từ đồ thị ta thấy phương trình \(\left(2\right)\) có hai nghiệm phân biệt nên phương trình \(\left(1\right)\) có hai nghiệm phân biệt khi phương trình \(\left(3\right)\) có hai nghiệm phân biệt khác hai nghiệm của phương trình \(\left(2\right)\).

\(\Leftrightarrow\left[{}\begin{matrix}-m=-3\\-1< -m< 1\\-m>1\end{matrix}\right.\)

...

NV
16 tháng 11 2018

Bạn tự vẽ đồ thị.

Ta đã biết quy tắc vẽ đồ thị của hàm số \(y=f\left(\left|x\right|\right)\) là vẽ đồ thị của hàm \(y=f\left(x\right)\), sau đó bỏ phần đồ thị bên trái trục Oy và lấy đối xứng phần đồ thị bên phải qua.

\(\Rightarrow f\left(x\right)=0\) có hai nghiệm dương phân biệt thì \(f\left(\left|x\right|\right)=0\) có 4 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có 2 nghiệm trái dấu thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có nghiệm kép dương thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt.

\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) (1)

\(\Leftrightarrow\left(f\left(\left|x\right|\right)-1\right)\left(f\left(\left|x\right|\right)-m+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)-1=0\\f\left(\left|x\right|\right)-m+3=0\left(2\right)\end{matrix}\right.\)

Xét \(f\left(x\right)-1=x^2-4x+2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\) (3)

\(\Rightarrow f\left(x\right)-1=0\) có 2 nghiệm dương phân biệt \(\Rightarrow f\left(\left|x\right|\right)-1=0\) có 4 nghiệm phân biệt

\(\Rightarrow\) Để (1) có 6 nghiệm phân biệt thì (2) có 2 nghiệm phân biệt. Ta có các trường hợp sau:

TH1: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có 2 nghiệm trái dấu, và nghiệm dương khác nghiệm của (3).

\(\Rightarrow\left\{{}\begin{matrix}1.\left(6-m\right)< 0\\m\ne4\end{matrix}\right.\) \(\Rightarrow m>6\)

TH2: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có nghiệm kép dương và khác nghiệm của (3)

\(\Rightarrow\Delta'=4+m-6=0\Rightarrow m=2\) \(\Rightarrow x=2>0\) (t/m)

Vậy để pt đã cho có 6 nghiệm phân biệt thì: \(\left[{}\begin{matrix}m>6\\m=2\end{matrix}\right.\)

18 tháng 11 2018

mình dựa vào đồ thị cũng ra như bạn, nhưng đáp án chỉ có 1,2,3 hoặc 4 giá trị nguyên của m thôi, có khi nào mình sai ở đâu đấy k nhỉ

29 tháng 1 2022

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)