K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2021

\(y'=\dfrac{-3-m}{\left(x-1\right)^2}\) ; \(y\left(2\right)=m+5\) ; \(y'\left(2\right)=-m-3\)

Phương trình tiếp tuyến tại điểm có hoành độ \(x=2\):

\(y=\left(-m-3\right)\left(x-2\right)+m+5\)

\(\Leftrightarrow y=-\left(m+3\right)x+3m+11\)

Để tiếp tuyến cắt 2 trục tạo thành tam giác \(\Rightarrow m\ne\left\{-3;-\dfrac{11}{3}\right\}\)

Gọi A và B lần lượt là giao điểm của tiếp tuyến với Ox và Oy

\(\Rightarrow A\left(\dfrac{3m+11}{m+3};0\right)\) ; \(B\left(0;3m+11\right)\)

\(\Rightarrow OA=\left|\dfrac{3m+11}{m+3}\right|\) ; \(OB=\left|3m+11\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{25}{2}\Rightarrow\dfrac{\left(3m+11\right)^2}{\left|m+3\right|}=25\)

\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Rightarrow\left[{}\begin{matrix}\left(3m+11\right)^2=-25\left(m+3\right)\\\left(3m+11\right)^2=25\left(m+3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9m^2+91m+196=0\\9m^2+41m+46=0\end{matrix}\right.\) \(\Rightarrow m=...\)

26 tháng 12 2019

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến Δ của  C m  tại điểm có hoành độ  x 0   =   2 là: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Suy ra diện tích tam giác OAB là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Theo giả thiết bài toán ta suy ra:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn A.

19 tháng 7 2017

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến Δ của  C m  tại điểm có hoành độ  x 0   =   2  là: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Suy ra diện tích tam giác OAB là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Theo giả thiết bài toán ta suy ra:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn A. 

NV
6 tháng 4 2020

Phương trình hoành độ giao điểm:

\(x^2-mx+m-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\) \(\Rightarrow m\ne2\)

\(y'=2x-m\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=2-m\\y'\left(m-1\right)=m-2\end{matrix}\right.\)

\(y'\left(1\right).y'\left(m-1\right)=-1\)

\(\Leftrightarrow\left(2-m\right)\left(m-2\right)=-1\Leftrightarrow\left(m-2\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=1\\m-2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)

24 tháng 8 2016

a) Gọi M' (x₁' ; y₁' ), N' (x₂' ; y₂ ) 

* M' là ảnh của M qua phép F, nên toạ độ M' thoả: 
{x₁' = x₁.cosα – y₁.sinα + a 
{y₁' = x₁.sinα + y₁.cosα + b 

* N' là ảnh của N qua phép F, nên toạ độ N' thoả: 
{x₂' = x₂.cosα – y₂.sinα + a 
{y₂' = x₂.sinα + y₂.cosα + b 

b) * Khoảng cách d giữa M và N là: 
d = MN = √ [(x₂ - x₁)² + (y₂ - y₁)²] 

* Khoảng cách d' giữa M' và N' là: 
d' = M'N' = √ [(x₂' - x₁' )² + (y₂' - y₁' )²] 

= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²} 

= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²} 

= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)] 

= √ [(x₂ - x₁)² + (y₂ - y₁)²] 

c) Phép F là phép dời hình vì: MN = M'N' = √ [(x₂ - x₁)² + (y₂ - y₁)²] 

d) Khi α = 0 ⇒ cosα = 1, sinα = 0 

Suy ra: 
{x' = x + a 
{y' = y + b 
Đây là biểu thức toạ độ của phép tịnh tiến. Vậy F là phép tịnh tiến

11 tháng 4 2017

Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Lấy điểm M(x0;y0) ∈ (C).

- Phương trình tiếp tuyến tại điểm M là:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục hoành: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục tung: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)