K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2021

\(y'=\dfrac{3}{\left(x+1\right)^2}\)

Gọi \(M\left(m;\dfrac{2m-1}{m+1}\right)\) là tiếp điểm

Phương trình tiếp tuyến tại M:

\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{2m-1}{m+1}\)

\(\Leftrightarrow3x-\left(m+1\right)^2y+2m^2-2m-1=0\)

Áp dụng công thức khoảng cách:

\(\dfrac{\left|-\left(m+1\right)^2+2m^2-2m-1\right|}{\sqrt{9+\left(m+1\right)^4}}=1\)

Bạn tự giải ra m nhé

29 tháng 4 2016

Gọi \(M\left(x_0;\frac{2x_0-1}{x_0-1}\right);x_0\ne-1\) là tiếp điểm.

Theo đề bài ta có MA = 2

hay \(x^2_0+\left(\frac{2x_0-1}{x_0+1}-1\right)^2=4\Leftrightarrow x^2_0+\left(\frac{x_0-2}{x_0+1}\right)^2=4\)

\(\Leftrightarrow x_0\left(x_0-2\right)\left(x^2_0+4x_0+6\right)=0;\left(x_0\ne-1\right)\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)

* Với \(x_0=0\), phương trình tiếp tuyến là \(y=y'\left(0\right)\left(x-0\right)+y\left(0\right)\) hay \(y=3x-1\)

* Với \(x_0=2\), phương trình tiếp tuyến là \(y=y'\left(2\right)\left(x-2\right)+y\left(2\right)\) hay \(y=\frac{1}{3}x+\frac{1}{3}\)

Vậy có tiếp tuyến thỏa mãn bài toán \(y=\frac{1}{3}x+\frac{1}{3}\) và \(y=3x-1\)

 
18 tháng 4 2016

Gọi \(x_0\) là hoành độ tiếp điểm \(\left(x_0\ne-1\right)\), phương trình tiếp tuyến là :

\(y=\frac{1}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{2x_0+1}{x_0+1}\)

Vì tiếp tuyến cách đều A và b nên tiếp tuyến đi qua trung điểm I của AB hoặc song song AB.

- Nếu tiếp tuyến đi qua trung điểm I(-1;1) của AB ta có \(x_0=1\), vậy phương trình là \(y=\frac{1}{4}x+\frac{5}{4}\)

- Nếu tiếp tuyến song song với đường thẳng AB : \(y=x+2\), ta có :

\(\frac{1}{\left(x_0+1\right)^2}=1;\frac{2x_0+1}{x_0+1}\ne2\Rightarrow x_0=0;x_0=-2\)

Với \(x_0=0\) ta có : \(y=x+1\)

Với \(x_0=-2\) ta có : \(y=x+5\)

 
12 tháng 1 2020

Pn ơi cho mk hỏi, sao I(-1:1) mà lại thay Xo=1 vậy

29 tháng 4 2016

a. Ta có : \(y'=3x^2-6x+2\)

\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)

Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)

 

b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :

\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)

Vậy phương trình tiếp tuyến là :

 \(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)

 

c. PTHD giao điểm của (C) với Ox :

\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)

\(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)

\(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)

\(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)

3 tháng 5 2016

Ta có \(y=x^4-4x^3+4x^2\Rightarrow4x^3-12x^2+8x\)

a. PTHD giao điểm của (C) và Parabol \(y=x^2\) :

\(x^4-4x^3+4x^2=x^2\Leftrightarrow x^2\left(x^2-4x+3\right)=0\)

                                \(\Leftrightarrow x=0;x=1;x=3\)

\(x=0\) ta có phương trình tiếp tuyến là \(y=0\)

\(x=2\) ta có phương trình tiếp tuyến là \(y=1\)

\(x=3\) ta có phương trình tiếp tuyến là \(y=24x-63\)

b. Gọi d là đường thẳng đi qua A, có hệ số góc k \(\Rightarrow d:y=k\left(x-2\right)\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\left(2-x\right)^2x^2-k\left(x-2\right)\\4x\left(x-2\right)\left(x-1\right)=k\end{cases}\) có nghiệm

Thay k vào phương trình thứ nhất ta có :

\(x^4-4x^3+4x^2=\left(x-2\right)\left(4x^3-12x^2+8x\right)\)

\(\Leftrightarrow x\left(3x-4\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow x=0;x=2;x=\frac{4}{3}\)

\(x=0\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)

\(x=2\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)

\(x=\frac{4}{3}\Rightarrow k=-\frac{32}{27}\Rightarrow\) Phương trình tiếp tuyến \(y=-\frac{32}{27}x+\frac{64}{27}\)
 
 

 

 

 

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

26 tháng 4 2017

+ Đồ thi hàm số đã cho co TCĐ là : x= -1 và TCN là y= 1; tâm đối xứng- giao của 2 đườg tiệm cận có tọa độ là I ( -1; 1)

 Gọi  M x 0 ; x 0 - 2 x 0 + 1 ∈ C ,   x 0 ≠ - 1 ,   I ( - 1 ; 1 )

+  Phương trình tiếp tuyến tại M có dạng

+ Giao điểm của ∆   với tiệm cận đứng là  A - 1 ; x 0 - 5 x 0 + 1

+ Giao điểm của  ∆   với tiệm cận ngang là  B( 2x0+1; 1).

Ta có 

Bán kính đường tròn ngoại tiếp tam giác IAB là S=p.r, suy ra

Suy ra,

Chọn  D.

Tham khảo:

undefined

undefined

undefined

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số