K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Ta có: f(x+1) = 3(x+1)2+1

f(x) = 3x2+1

=> f(x+1) - f(x) = 3(x+1)2 +1 - 3x2 - 1 = 3(x2+2x+1) +1 -3x2 -1

= 3x2 +6x +3 + 1 - 3x2 -1 = 6x + 3 (Là hàm số bậc nhất)

=> f(x+1) - f(x) là hàm số bậc nhất.

27 tháng 1 2024

cho mình hỏi tại sao f(x+1)= 3(x+1)2+1 vậy ạ

 

23 tháng 11 2021

Answer:

Ta có: 

\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)

\(=6x-1-2\sqrt{5}x+\sqrt{5}\)

\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)

Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)

Ta thấy: 

\(a=6-2\sqrt{5}\ne0\)

\(b=\sqrt{5}-1\inℝ\)

\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất

\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất

Ta thấy: 

Hệ số \(a=6-2\sqrt{5}\)

Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)

Thấy được:

\(6-2\sqrt{5}>0\)

\(\Rightarrow a=6-2\sqrt{5}>0\)

Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)

16 tháng 10 2020

m=2. Khi đó hàm số trở thành: f(x)= -4x-3

Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0

13 tháng 8 2021

giúp tớ đi =))

 

13 tháng 8 2021

\(f\left(x\right)=3x^2+1\)

\(f\left(x+1\right)=3\left(x+1\right)^2+1\\ f\left(x+1\right)=3\left(x^2+2x+1\right)+1\\ f\left(x+1\right)=3x^2+6x+3+1\\ f\left(x+1\right)=3x^2+6x+4\\ f\left(x+1\right)-f\left(x\right)=3x^2+6x+4-3x^2-1\\ f\left(x+1\right)-f\left(x\right)=6x+3\)

Vậy y = f (x+1) - f (x) là hàm số bậc nhất.