K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

a, Bảng biến thiên:

Đồ thị hàm số:

b, \(f\left(x\right)>0\Leftrightarrow x\in\left(-\infty;-3\right)\cup\left(-1;+\infty\right)\)

\(f\left(x\right)< 0\Leftrightarrow x\in\left(-3;-1\right)\)

c, Yêu cầu bài toán là gì vậy:v

d, Phương trình hoành độ giao điểm của \(\left(P\right);\left(d\right)\):

\(x^2+4x+3=2x+m-5\)

\(\Leftrightarrow x^2+2x+8-m=0\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt

\(\Delta'=1-\left(8-m\right)=m-7>0\Leftrightarrow m>7\)

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

27 tháng 7 2019

Hỏi đáp Toán

26 tháng 7 2019

a, (from geogebra :V)

Hỏi đáp Toán

b, (do không rõ, mình gộp cả 2 điều kiện nhé)

Dựa vào đồ thị, điều kiện của x sao cho \(0< f\left(x\right)< 1\)\(1< x< 5\).

Chúc bạn học tốt nhaok.

11 tháng 12 2021

a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]

Bảng biến thiên là:

x-∞2+∞
y-∞1-∞

 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?

NV
16 tháng 11 2018

Bạn tự vẽ đồ thị.

Ta đã biết quy tắc vẽ đồ thị của hàm số \(y=f\left(\left|x\right|\right)\) là vẽ đồ thị của hàm \(y=f\left(x\right)\), sau đó bỏ phần đồ thị bên trái trục Oy và lấy đối xứng phần đồ thị bên phải qua.

\(\Rightarrow f\left(x\right)=0\) có hai nghiệm dương phân biệt thì \(f\left(\left|x\right|\right)=0\) có 4 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có 2 nghiệm trái dấu thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có nghiệm kép dương thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt.

\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) (1)

\(\Leftrightarrow\left(f\left(\left|x\right|\right)-1\right)\left(f\left(\left|x\right|\right)-m+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)-1=0\\f\left(\left|x\right|\right)-m+3=0\left(2\right)\end{matrix}\right.\)

Xét \(f\left(x\right)-1=x^2-4x+2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\) (3)

\(\Rightarrow f\left(x\right)-1=0\) có 2 nghiệm dương phân biệt \(\Rightarrow f\left(\left|x\right|\right)-1=0\) có 4 nghiệm phân biệt

\(\Rightarrow\) Để (1) có 6 nghiệm phân biệt thì (2) có 2 nghiệm phân biệt. Ta có các trường hợp sau:

TH1: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có 2 nghiệm trái dấu, và nghiệm dương khác nghiệm của (3).

\(\Rightarrow\left\{{}\begin{matrix}1.\left(6-m\right)< 0\\m\ne4\end{matrix}\right.\) \(\Rightarrow m>6\)

TH2: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có nghiệm kép dương và khác nghiệm của (3)

\(\Rightarrow\Delta'=4+m-6=0\Rightarrow m=2\) \(\Rightarrow x=2>0\) (t/m)

Vậy để pt đã cho có 6 nghiệm phân biệt thì: \(\left[{}\begin{matrix}m>6\\m=2\end{matrix}\right.\)

18 tháng 11 2018

mình dựa vào đồ thị cũng ra như bạn, nhưng đáp án chỉ có 1,2,3 hoặc 4 giá trị nguyên của m thôi, có khi nào mình sai ở đâu đấy k nhỉ